Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
663f364b |
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
1129b882 |
4 | * 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others |
98994639 |
5 | * |
6 | * You may distribute under the terms of either the GNU General Public |
7 | * License or the Artistic License, as specified in the README file. |
8 | * |
9 | */ |
10 | |
11 | /* |
4ac71550 |
12 | * "That only makes eleven (plus one mislaid) and not fourteen, |
13 | * unless wizards count differently to other people." --Beorn |
14 | * |
15 | * [p.115 of _The Hobbit_: "Queer Lodgings"] |
98994639 |
16 | */ |
17 | |
ccfc67b7 |
18 | /* |
19 | =head1 Numeric functions |
166f8a29 |
20 | |
21 | This file contains all the stuff needed by perl for manipulating numeric |
22 | values, including such things as replacements for the OS's atof() function |
23 | |
24 | =cut |
25 | |
ccfc67b7 |
26 | */ |
27 | |
98994639 |
28 | #include "EXTERN.h" |
29 | #define PERL_IN_NUMERIC_C |
30 | #include "perl.h" |
31 | |
32 | U32 |
33 | Perl_cast_ulong(pTHX_ NV f) |
34 | { |
96a5add6 |
35 | PERL_UNUSED_CONTEXT; |
98994639 |
36 | if (f < 0.0) |
37 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
38 | if (f < U32_MAX_P1) { |
39 | #if CASTFLAGS & 2 |
40 | if (f < U32_MAX_P1_HALF) |
41 | return (U32) f; |
42 | f -= U32_MAX_P1_HALF; |
43 | return ((U32) f) | (1 + U32_MAX >> 1); |
44 | #else |
45 | return (U32) f; |
46 | #endif |
47 | } |
48 | return f > 0 ? U32_MAX : 0 /* NaN */; |
49 | } |
50 | |
51 | I32 |
52 | Perl_cast_i32(pTHX_ NV f) |
53 | { |
96a5add6 |
54 | PERL_UNUSED_CONTEXT; |
98994639 |
55 | if (f < I32_MAX_P1) |
56 | return f < I32_MIN ? I32_MIN : (I32) f; |
57 | if (f < U32_MAX_P1) { |
58 | #if CASTFLAGS & 2 |
59 | if (f < U32_MAX_P1_HALF) |
60 | return (I32)(U32) f; |
61 | f -= U32_MAX_P1_HALF; |
62 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
63 | #else |
64 | return (I32)(U32) f; |
65 | #endif |
66 | } |
67 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
68 | } |
69 | |
70 | IV |
71 | Perl_cast_iv(pTHX_ NV f) |
72 | { |
96a5add6 |
73 | PERL_UNUSED_CONTEXT; |
98994639 |
74 | if (f < IV_MAX_P1) |
75 | return f < IV_MIN ? IV_MIN : (IV) f; |
76 | if (f < UV_MAX_P1) { |
77 | #if CASTFLAGS & 2 |
78 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
79 | if (f < UV_MAX_P1_HALF) |
80 | return (IV)(UV) f; |
81 | f -= UV_MAX_P1_HALF; |
82 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
83 | #else |
84 | return (IV)(UV) f; |
85 | #endif |
86 | } |
87 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
88 | } |
89 | |
90 | UV |
91 | Perl_cast_uv(pTHX_ NV f) |
92 | { |
96a5add6 |
93 | PERL_UNUSED_CONTEXT; |
98994639 |
94 | if (f < 0.0) |
95 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
96 | if (f < UV_MAX_P1) { |
97 | #if CASTFLAGS & 2 |
98 | if (f < UV_MAX_P1_HALF) |
99 | return (UV) f; |
100 | f -= UV_MAX_P1_HALF; |
101 | return ((UV) f) | (1 + UV_MAX >> 1); |
102 | #else |
103 | return (UV) f; |
104 | #endif |
105 | } |
106 | return f > 0 ? UV_MAX : 0 /* NaN */; |
107 | } |
108 | |
53305cf1 |
109 | /* |
110 | =for apidoc grok_bin |
98994639 |
111 | |
53305cf1 |
112 | converts a string representing a binary number to numeric form. |
113 | |
114 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
115 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
116 | The scan stops at the end of the string, or the first invalid character. |
7b667b5f |
117 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
118 | invalid character will also trigger a warning. |
119 | On return I<*len> is set to the length of the scanned string, |
120 | and I<*flags> gives output flags. |
53305cf1 |
121 | |
7fc63493 |
122 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear, |
53305cf1 |
123 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
124 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
125 | and writes the value to I<*result> (or the value is discarded if I<result> |
126 | is NULL). |
127 | |
7b667b5f |
128 | The binary number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
129 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
130 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
131 | number may use '_' characters to separate digits. |
132 | |
133 | =cut |
134 | */ |
135 | |
136 | UV |
7918f24d |
137 | Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) |
138 | { |
53305cf1 |
139 | const char *s = start; |
140 | STRLEN len = *len_p; |
141 | UV value = 0; |
142 | NV value_nv = 0; |
143 | |
144 | const UV max_div_2 = UV_MAX / 2; |
585ec06d |
145 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
146 | bool overflowed = FALSE; |
7fc63493 |
147 | char bit; |
53305cf1 |
148 | |
7918f24d |
149 | PERL_ARGS_ASSERT_GROK_BIN; |
150 | |
a4c04bdc |
151 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
152 | /* strip off leading b or 0b. |
153 | for compatibility silently suffer "b" and "0b" as valid binary |
154 | numbers. */ |
155 | if (len >= 1) { |
156 | if (s[0] == 'b') { |
157 | s++; |
158 | len--; |
159 | } |
160 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
161 | s+=2; |
162 | len-=2; |
163 | } |
164 | } |
53305cf1 |
165 | } |
166 | |
7fc63493 |
167 | for (; len-- && (bit = *s); s++) { |
53305cf1 |
168 | if (bit == '0' || bit == '1') { |
169 | /* Write it in this wonky order with a goto to attempt to get the |
170 | compiler to make the common case integer-only loop pretty tight. |
171 | With gcc seems to be much straighter code than old scan_bin. */ |
172 | redo: |
173 | if (!overflowed) { |
174 | if (value <= max_div_2) { |
175 | value = (value << 1) | (bit - '0'); |
176 | continue; |
177 | } |
178 | /* Bah. We're just overflowed. */ |
9b387841 |
179 | Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW), |
180 | "Integer overflow in binary number"); |
53305cf1 |
181 | overflowed = TRUE; |
182 | value_nv = (NV) value; |
183 | } |
184 | value_nv *= 2.0; |
98994639 |
185 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
186 | * represent a UV this summing of small low-order numbers |
98994639 |
187 | * is a waste of time (because the NV cannot preserve |
188 | * the low-order bits anyway): we could just remember when |
53305cf1 |
189 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
190 | * right amount. */ |
53305cf1 |
191 | value_nv += (NV)(bit - '0'); |
192 | continue; |
193 | } |
194 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
195 | && (bit == '0' || bit == '1')) |
98994639 |
196 | { |
197 | --len; |
198 | ++s; |
53305cf1 |
199 | goto redo; |
98994639 |
200 | } |
a2a5de95 |
201 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) |
202 | Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT), |
203 | "Illegal binary digit '%c' ignored", *s); |
53305cf1 |
204 | break; |
98994639 |
205 | } |
53305cf1 |
206 | |
207 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
208 | #if UVSIZE > 4 |
53305cf1 |
209 | || (!overflowed && value > 0xffffffff ) |
98994639 |
210 | #endif |
211 | ) { |
a2a5de95 |
212 | Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), |
213 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
53305cf1 |
214 | } |
215 | *len_p = s - start; |
216 | if (!overflowed) { |
217 | *flags = 0; |
218 | return value; |
98994639 |
219 | } |
53305cf1 |
220 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
221 | if (result) |
222 | *result = value_nv; |
223 | return UV_MAX; |
98994639 |
224 | } |
225 | |
53305cf1 |
226 | /* |
227 | =for apidoc grok_hex |
228 | |
229 | converts a string representing a hex number to numeric form. |
230 | |
231 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
232 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
7b667b5f |
233 | The scan stops at the end of the string, or the first invalid character. |
234 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
235 | invalid character will also trigger a warning. |
236 | On return I<*len> is set to the length of the scanned string, |
237 | and I<*flags> gives output flags. |
53305cf1 |
238 | |
239 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
240 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
241 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
242 | and writes the value to I<*result> (or the value is discarded if I<result> |
243 | is NULL). |
244 | |
d1be9408 |
245 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
246 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
247 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
248 | number may use '_' characters to separate digits. |
249 | |
250 | =cut |
251 | */ |
252 | |
253 | UV |
7918f24d |
254 | Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) |
255 | { |
27da23d5 |
256 | dVAR; |
53305cf1 |
257 | const char *s = start; |
258 | STRLEN len = *len_p; |
259 | UV value = 0; |
260 | NV value_nv = 0; |
53305cf1 |
261 | const UV max_div_16 = UV_MAX / 16; |
585ec06d |
262 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
263 | bool overflowed = FALSE; |
98994639 |
264 | |
7918f24d |
265 | PERL_ARGS_ASSERT_GROK_HEX; |
266 | |
a4c04bdc |
267 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
268 | /* strip off leading x or 0x. |
269 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
270 | */ |
271 | if (len >= 1) { |
272 | if (s[0] == 'x') { |
273 | s++; |
274 | len--; |
275 | } |
276 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
277 | s+=2; |
278 | len-=2; |
279 | } |
280 | } |
98994639 |
281 | } |
282 | |
283 | for (; len-- && *s; s++) { |
a3b680e6 |
284 | const char *hexdigit = strchr(PL_hexdigit, *s); |
53305cf1 |
285 | if (hexdigit) { |
286 | /* Write it in this wonky order with a goto to attempt to get the |
287 | compiler to make the common case integer-only loop pretty tight. |
288 | With gcc seems to be much straighter code than old scan_hex. */ |
289 | redo: |
290 | if (!overflowed) { |
291 | if (value <= max_div_16) { |
292 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
293 | continue; |
294 | } |
295 | /* Bah. We're just overflowed. */ |
9b387841 |
296 | Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW), |
297 | "Integer overflow in hexadecimal number"); |
53305cf1 |
298 | overflowed = TRUE; |
299 | value_nv = (NV) value; |
300 | } |
301 | value_nv *= 16.0; |
302 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
303 | * represent a UV this summing of small low-order numbers |
53305cf1 |
304 | * is a waste of time (because the NV cannot preserve |
305 | * the low-order bits anyway): we could just remember when |
306 | * did we overflow and in the end just multiply value_nv by the |
307 | * right amount of 16-tuples. */ |
308 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
309 | continue; |
310 | } |
311 | if (*s == '_' && len && allow_underscores && s[1] |
e1ec3a88 |
312 | && (hexdigit = strchr(PL_hexdigit, s[1]))) |
98994639 |
313 | { |
314 | --len; |
315 | ++s; |
53305cf1 |
316 | goto redo; |
98994639 |
317 | } |
a2a5de95 |
318 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) |
319 | Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
320 | "Illegal hexadecimal digit '%c' ignored", *s); |
321 | break; |
322 | } |
323 | |
324 | if ( ( overflowed && value_nv > 4294967295.0) |
325 | #if UVSIZE > 4 |
326 | || (!overflowed && value > 0xffffffff ) |
327 | #endif |
328 | ) { |
a2a5de95 |
329 | Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), |
330 | "Hexadecimal number > 0xffffffff non-portable"); |
53305cf1 |
331 | } |
332 | *len_p = s - start; |
333 | if (!overflowed) { |
334 | *flags = 0; |
335 | return value; |
336 | } |
337 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
338 | if (result) |
339 | *result = value_nv; |
340 | return UV_MAX; |
341 | } |
342 | |
343 | /* |
344 | =for apidoc grok_oct |
345 | |
7b667b5f |
346 | converts a string representing an octal number to numeric form. |
347 | |
348 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
349 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
350 | The scan stops at the end of the string, or the first invalid character. |
351 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
352 | invalid character will also trigger a warning. |
353 | On return I<*len> is set to the length of the scanned string, |
354 | and I<*flags> gives output flags. |
355 | |
356 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
357 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct> |
358 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
359 | and writes the value to I<*result> (or the value is discarded if I<result> |
360 | is NULL). |
361 | |
362 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal |
363 | number may use '_' characters to separate digits. |
53305cf1 |
364 | |
365 | =cut |
366 | */ |
367 | |
368 | UV |
7918f24d |
369 | Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) |
370 | { |
53305cf1 |
371 | const char *s = start; |
372 | STRLEN len = *len_p; |
373 | UV value = 0; |
374 | NV value_nv = 0; |
53305cf1 |
375 | const UV max_div_8 = UV_MAX / 8; |
585ec06d |
376 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
377 | bool overflowed = FALSE; |
378 | |
7918f24d |
379 | PERL_ARGS_ASSERT_GROK_OCT; |
380 | |
53305cf1 |
381 | for (; len-- && *s; s++) { |
382 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
383 | out front allows slicker code. */ |
384 | int digit = *s - '0'; |
385 | if (digit >= 0 && digit <= 7) { |
386 | /* Write it in this wonky order with a goto to attempt to get the |
387 | compiler to make the common case integer-only loop pretty tight. |
388 | */ |
389 | redo: |
390 | if (!overflowed) { |
391 | if (value <= max_div_8) { |
392 | value = (value << 3) | digit; |
393 | continue; |
394 | } |
395 | /* Bah. We're just overflowed. */ |
9b387841 |
396 | Perl_ck_warner_d(aTHX_ packWARN(WARN_OVERFLOW), |
397 | "Integer overflow in octal number"); |
53305cf1 |
398 | overflowed = TRUE; |
399 | value_nv = (NV) value; |
400 | } |
401 | value_nv *= 8.0; |
98994639 |
402 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
403 | * represent a UV this summing of small low-order numbers |
98994639 |
404 | * is a waste of time (because the NV cannot preserve |
405 | * the low-order bits anyway): we could just remember when |
53305cf1 |
406 | * did we overflow and in the end just multiply value_nv by the |
407 | * right amount of 8-tuples. */ |
408 | value_nv += (NV)digit; |
409 | continue; |
410 | } |
411 | if (digit == ('_' - '0') && len && allow_underscores |
412 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
413 | { |
414 | --len; |
415 | ++s; |
416 | goto redo; |
417 | } |
418 | /* Allow \octal to work the DWIM way (that is, stop scanning |
7b667b5f |
419 | * as soon as non-octal characters are seen, complain only if |
53305cf1 |
420 | * someone seems to want to use the digits eight and nine). */ |
421 | if (digit == 8 || digit == 9) { |
a2a5de95 |
422 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT)) |
423 | Perl_ck_warner(aTHX_ packWARN(WARN_DIGIT), |
424 | "Illegal octal digit '%c' ignored", *s); |
53305cf1 |
425 | } |
426 | break; |
98994639 |
427 | } |
53305cf1 |
428 | |
429 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
430 | #if UVSIZE > 4 |
53305cf1 |
431 | || (!overflowed && value > 0xffffffff ) |
98994639 |
432 | #endif |
433 | ) { |
a2a5de95 |
434 | Perl_ck_warner(aTHX_ packWARN(WARN_PORTABLE), |
435 | "Octal number > 037777777777 non-portable"); |
53305cf1 |
436 | } |
437 | *len_p = s - start; |
438 | if (!overflowed) { |
439 | *flags = 0; |
440 | return value; |
98994639 |
441 | } |
53305cf1 |
442 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
443 | if (result) |
444 | *result = value_nv; |
445 | return UV_MAX; |
446 | } |
447 | |
448 | /* |
449 | =for apidoc scan_bin |
450 | |
451 | For backwards compatibility. Use C<grok_bin> instead. |
452 | |
453 | =for apidoc scan_hex |
454 | |
455 | For backwards compatibility. Use C<grok_hex> instead. |
456 | |
457 | =for apidoc scan_oct |
458 | |
459 | For backwards compatibility. Use C<grok_oct> instead. |
460 | |
461 | =cut |
462 | */ |
463 | |
464 | NV |
73d840c0 |
465 | Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
466 | { |
467 | NV rnv; |
468 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
469 | const UV ruv = grok_bin (start, &len, &flags, &rnv); |
53305cf1 |
470 | |
7918f24d |
471 | PERL_ARGS_ASSERT_SCAN_BIN; |
472 | |
53305cf1 |
473 | *retlen = len; |
474 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
475 | } |
476 | |
477 | NV |
73d840c0 |
478 | Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
479 | { |
480 | NV rnv; |
481 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
482 | const UV ruv = grok_oct (start, &len, &flags, &rnv); |
53305cf1 |
483 | |
7918f24d |
484 | PERL_ARGS_ASSERT_SCAN_OCT; |
485 | |
53305cf1 |
486 | *retlen = len; |
487 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
488 | } |
489 | |
490 | NV |
73d840c0 |
491 | Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
492 | { |
493 | NV rnv; |
494 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
495 | const UV ruv = grok_hex (start, &len, &flags, &rnv); |
53305cf1 |
496 | |
7918f24d |
497 | PERL_ARGS_ASSERT_SCAN_HEX; |
498 | |
53305cf1 |
499 | *retlen = len; |
500 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
501 | } |
502 | |
503 | /* |
504 | =for apidoc grok_numeric_radix |
505 | |
506 | Scan and skip for a numeric decimal separator (radix). |
507 | |
508 | =cut |
509 | */ |
510 | bool |
511 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
512 | { |
513 | #ifdef USE_LOCALE_NUMERIC |
97aff369 |
514 | dVAR; |
7918f24d |
515 | |
516 | PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX; |
517 | |
98994639 |
518 | if (PL_numeric_radix_sv && IN_LOCALE) { |
519 | STRLEN len; |
c4420975 |
520 | const char * const radix = SvPV(PL_numeric_radix_sv, len); |
98994639 |
521 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
522 | *sp += len; |
523 | return TRUE; |
524 | } |
525 | } |
526 | /* always try "." if numeric radix didn't match because |
527 | * we may have data from different locales mixed */ |
528 | #endif |
7918f24d |
529 | |
530 | PERL_ARGS_ASSERT_GROK_NUMERIC_RADIX; |
531 | |
98994639 |
532 | if (*sp < send && **sp == '.') { |
533 | ++*sp; |
534 | return TRUE; |
535 | } |
536 | return FALSE; |
537 | } |
538 | |
539 | /* |
540 | =for apidoc grok_number |
541 | |
542 | Recognise (or not) a number. The type of the number is returned |
543 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
544 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
545 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
546 | |
547 | If the value of the number can fit an in UV, it is returned in the *valuep |
548 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
549 | will never be set unless *valuep is valid, but *valuep may have been assigned |
550 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
551 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
552 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
553 | |
554 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
555 | seen (in which case *valuep gives the true value truncated to an integer), and |
556 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
557 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
558 | number is larger than a UV. |
98994639 |
559 | |
560 | =cut |
561 | */ |
562 | int |
563 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
564 | { |
60939fb8 |
565 | const char *s = pv; |
c4420975 |
566 | const char * const send = pv + len; |
60939fb8 |
567 | const UV max_div_10 = UV_MAX / 10; |
568 | const char max_mod_10 = UV_MAX % 10; |
569 | int numtype = 0; |
570 | int sawinf = 0; |
aa8b85de |
571 | int sawnan = 0; |
60939fb8 |
572 | |
7918f24d |
573 | PERL_ARGS_ASSERT_GROK_NUMBER; |
574 | |
60939fb8 |
575 | while (s < send && isSPACE(*s)) |
576 | s++; |
577 | if (s == send) { |
578 | return 0; |
579 | } else if (*s == '-') { |
580 | s++; |
581 | numtype = IS_NUMBER_NEG; |
582 | } |
583 | else if (*s == '+') |
584 | s++; |
585 | |
586 | if (s == send) |
587 | return 0; |
588 | |
589 | /* next must be digit or the radix separator or beginning of infinity */ |
590 | if (isDIGIT(*s)) { |
591 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
592 | overflow. */ |
593 | UV value = *s - '0'; |
594 | /* This construction seems to be more optimiser friendly. |
595 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
596 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
597 | In theory the optimiser could deduce how far to unroll the loop |
598 | before checking for overflow. */ |
58bb9ec3 |
599 | if (++s < send) { |
600 | int digit = *s - '0'; |
60939fb8 |
601 | if (digit >= 0 && digit <= 9) { |
602 | value = value * 10 + digit; |
58bb9ec3 |
603 | if (++s < send) { |
604 | digit = *s - '0'; |
60939fb8 |
605 | if (digit >= 0 && digit <= 9) { |
606 | value = value * 10 + digit; |
58bb9ec3 |
607 | if (++s < send) { |
608 | digit = *s - '0'; |
60939fb8 |
609 | if (digit >= 0 && digit <= 9) { |
610 | value = value * 10 + digit; |
58bb9ec3 |
611 | if (++s < send) { |
612 | digit = *s - '0'; |
60939fb8 |
613 | if (digit >= 0 && digit <= 9) { |
614 | value = value * 10 + digit; |
58bb9ec3 |
615 | if (++s < send) { |
616 | digit = *s - '0'; |
60939fb8 |
617 | if (digit >= 0 && digit <= 9) { |
618 | value = value * 10 + digit; |
58bb9ec3 |
619 | if (++s < send) { |
620 | digit = *s - '0'; |
60939fb8 |
621 | if (digit >= 0 && digit <= 9) { |
622 | value = value * 10 + digit; |
58bb9ec3 |
623 | if (++s < send) { |
624 | digit = *s - '0'; |
60939fb8 |
625 | if (digit >= 0 && digit <= 9) { |
626 | value = value * 10 + digit; |
58bb9ec3 |
627 | if (++s < send) { |
628 | digit = *s - '0'; |
60939fb8 |
629 | if (digit >= 0 && digit <= 9) { |
630 | value = value * 10 + digit; |
58bb9ec3 |
631 | if (++s < send) { |
60939fb8 |
632 | /* Now got 9 digits, so need to check |
633 | each time for overflow. */ |
58bb9ec3 |
634 | digit = *s - '0'; |
60939fb8 |
635 | while (digit >= 0 && digit <= 9 |
636 | && (value < max_div_10 |
637 | || (value == max_div_10 |
638 | && digit <= max_mod_10))) { |
639 | value = value * 10 + digit; |
58bb9ec3 |
640 | if (++s < send) |
641 | digit = *s - '0'; |
60939fb8 |
642 | else |
643 | break; |
644 | } |
645 | if (digit >= 0 && digit <= 9 |
51bd16da |
646 | && (s < send)) { |
60939fb8 |
647 | /* value overflowed. |
648 | skip the remaining digits, don't |
649 | worry about setting *valuep. */ |
650 | do { |
651 | s++; |
652 | } while (s < send && isDIGIT(*s)); |
653 | numtype |= |
654 | IS_NUMBER_GREATER_THAN_UV_MAX; |
655 | goto skip_value; |
656 | } |
657 | } |
658 | } |
98994639 |
659 | } |
60939fb8 |
660 | } |
661 | } |
662 | } |
663 | } |
664 | } |
665 | } |
666 | } |
667 | } |
668 | } |
669 | } |
670 | } |
98994639 |
671 | } |
60939fb8 |
672 | } |
98994639 |
673 | } |
60939fb8 |
674 | numtype |= IS_NUMBER_IN_UV; |
675 | if (valuep) |
676 | *valuep = value; |
677 | |
678 | skip_value: |
679 | if (GROK_NUMERIC_RADIX(&s, send)) { |
680 | numtype |= IS_NUMBER_NOT_INT; |
681 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
682 | s++; |
98994639 |
683 | } |
60939fb8 |
684 | } |
685 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
686 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
687 | /* no digits before the radix means we need digits after it */ |
688 | if (s < send && isDIGIT(*s)) { |
689 | do { |
690 | s++; |
691 | } while (s < send && isDIGIT(*s)); |
692 | if (valuep) { |
693 | /* integer approximation is valid - it's 0. */ |
694 | *valuep = 0; |
695 | } |
98994639 |
696 | } |
60939fb8 |
697 | else |
698 | return 0; |
699 | } else if (*s == 'I' || *s == 'i') { |
700 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
701 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
702 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
703 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
704 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
705 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
706 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
707 | s++; |
98994639 |
708 | } |
60939fb8 |
709 | sawinf = 1; |
aa8b85de |
710 | } else if (*s == 'N' || *s == 'n') { |
711 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
712 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
713 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
714 | s++; |
715 | sawnan = 1; |
716 | } else |
98994639 |
717 | return 0; |
60939fb8 |
718 | |
719 | if (sawinf) { |
720 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
721 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
722 | } else if (sawnan) { |
723 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
724 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
725 | } else if (s < send) { |
726 | /* we can have an optional exponent part */ |
727 | if (*s == 'e' || *s == 'E') { |
728 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
729 | numtype &= IS_NUMBER_NEG; |
730 | numtype |= IS_NUMBER_NOT_INT; |
731 | s++; |
732 | if (s < send && (*s == '-' || *s == '+')) |
733 | s++; |
734 | if (s < send && isDIGIT(*s)) { |
735 | do { |
736 | s++; |
737 | } while (s < send && isDIGIT(*s)); |
738 | } |
739 | else |
740 | return 0; |
741 | } |
742 | } |
743 | while (s < send && isSPACE(*s)) |
744 | s++; |
745 | if (s >= send) |
aa8b85de |
746 | return numtype; |
60939fb8 |
747 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
748 | if (valuep) |
749 | *valuep = 0; |
750 | return IS_NUMBER_IN_UV; |
751 | } |
752 | return 0; |
98994639 |
753 | } |
754 | |
4801ca72 |
755 | STATIC NV |
98994639 |
756 | S_mulexp10(NV value, I32 exponent) |
757 | { |
758 | NV result = 1.0; |
759 | NV power = 10.0; |
760 | bool negative = 0; |
761 | I32 bit; |
762 | |
763 | if (exponent == 0) |
764 | return value; |
20f6aaab |
765 | if (value == 0) |
66a1b24b |
766 | return (NV)0; |
87032ba1 |
767 | |
24866caa |
768 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
769 | * and that format does not have *easy* capabilities [1] for |
24866caa |
770 | * overflowing doubles 'silently' as IEEE fp does. We also need |
771 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
772 | * range is much larger than D_FLOAT it still doesn't do silent |
773 | * overflow. Therefore we need to detect early whether we would |
774 | * overflow (this is the behaviour of the native string-to-float |
775 | * conversion routines, and therefore of native applications, too). |
67597c89 |
776 | * |
24866caa |
777 | * [1] Trying to establish a condition handler to trap floating point |
778 | * exceptions is not a good idea. */ |
87032ba1 |
779 | |
780 | /* In UNICOS and in certain Cray models (such as T90) there is no |
781 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
782 | * There is something you can do if you are willing to use some |
783 | * inline assembler: the instruction is called DFI-- but that will |
784 | * disable *all* floating point interrupts, a little bit too large |
785 | * a hammer. Therefore we need to catch potential overflows before |
786 | * it's too late. */ |
353813d9 |
787 | |
788 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
789 | STMT_START { |
c4420975 |
790 | const NV exp_v = log10(value); |
353813d9 |
791 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
792 | return NV_MAX; |
793 | if (exponent < 0) { |
794 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
795 | return 0.0; |
796 | while (-exponent >= NV_MAX_10_EXP) { |
797 | /* combination does not overflow, but 10^(-exponent) does */ |
798 | value /= 10; |
799 | ++exponent; |
800 | } |
801 | } |
802 | } STMT_END; |
87032ba1 |
803 | #endif |
804 | |
353813d9 |
805 | if (exponent < 0) { |
806 | negative = 1; |
807 | exponent = -exponent; |
808 | } |
98994639 |
809 | for (bit = 1; exponent; bit <<= 1) { |
810 | if (exponent & bit) { |
811 | exponent ^= bit; |
812 | result *= power; |
236f0012 |
813 | /* Floating point exceptions are supposed to be turned off, |
814 | * but if we're obviously done, don't risk another iteration. |
815 | */ |
816 | if (exponent == 0) break; |
98994639 |
817 | } |
818 | power *= power; |
819 | } |
820 | return negative ? value / result : value * result; |
821 | } |
822 | |
823 | NV |
824 | Perl_my_atof(pTHX_ const char* s) |
825 | { |
826 | NV x = 0.0; |
827 | #ifdef USE_LOCALE_NUMERIC |
97aff369 |
828 | dVAR; |
7918f24d |
829 | |
830 | PERL_ARGS_ASSERT_MY_ATOF; |
831 | |
98994639 |
832 | if (PL_numeric_local && IN_LOCALE) { |
833 | NV y; |
834 | |
835 | /* Scan the number twice; once using locale and once without; |
836 | * choose the larger result (in absolute value). */ |
a36244b7 |
837 | Perl_atof2(s, x); |
98994639 |
838 | SET_NUMERIC_STANDARD(); |
a36244b7 |
839 | Perl_atof2(s, y); |
98994639 |
840 | SET_NUMERIC_LOCAL(); |
841 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
842 | return y; |
843 | } |
844 | else |
a36244b7 |
845 | Perl_atof2(s, x); |
98994639 |
846 | #else |
a36244b7 |
847 | Perl_atof2(s, x); |
98994639 |
848 | #endif |
849 | return x; |
850 | } |
851 | |
852 | char* |
853 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
854 | { |
20f6aaab |
855 | NV result[3] = {0.0, 0.0, 0.0}; |
e1ec3a88 |
856 | const char* s = orig; |
a36244b7 |
857 | #ifdef USE_PERL_ATOF |
20f6aaab |
858 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
859 | bool negative = 0; |
e1ec3a88 |
860 | const char* send = s + strlen(orig) - 1; |
8194bf88 |
861 | bool seen_digit = 0; |
20f6aaab |
862 | I32 exp_adjust[2] = {0,0}; |
863 | I32 exp_acc[2] = {-1, -1}; |
864 | /* the current exponent adjust for the accumulators */ |
98994639 |
865 | I32 exponent = 0; |
8194bf88 |
866 | I32 seen_dp = 0; |
20f6aaab |
867 | I32 digit = 0; |
868 | I32 old_digit = 0; |
8194bf88 |
869 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
870 | |
7918f24d |
871 | PERL_ARGS_ASSERT_MY_ATOF2; |
872 | |
8194bf88 |
873 | /* There is no point in processing more significant digits |
874 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
875 | * while we need an upper-bound value. We add 2 to account for this; |
876 | * since it will have been conservative on both the first and last digit. |
877 | * For example a 32-bit mantissa with an exponent of 4 would have |
878 | * exact values in the set |
879 | * 4 |
880 | * 8 |
881 | * .. |
882 | * 17179869172 |
883 | * 17179869176 |
884 | * 17179869180 |
885 | * |
886 | * where for the purposes of calculating NV_DIG we would have to discount |
887 | * both the first and last digit, since neither can hold all values from |
888 | * 0..9; but for calculating the value we must examine those two digits. |
889 | */ |
890 | #define MAX_SIG_DIGITS (NV_DIG+2) |
891 | |
892 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
893 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
894 | |
96a05aee |
895 | /* leading whitespace */ |
896 | while (isSPACE(*s)) |
897 | ++s; |
898 | |
98994639 |
899 | /* sign */ |
900 | switch (*s) { |
901 | case '-': |
902 | negative = 1; |
903 | /* fall through */ |
904 | case '+': |
905 | ++s; |
906 | } |
907 | |
2b54f59f |
908 | /* punt to strtod for NaN/Inf; if no support for it there, tough luck */ |
909 | |
910 | #ifdef HAS_STRTOD |
911 | if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') { |
c042ae3a |
912 | const char *p = negative ? s - 1 : s; |
2b54f59f |
913 | char *endp; |
914 | NV rslt; |
915 | rslt = strtod(p, &endp); |
916 | if (endp != p) { |
917 | *value = rslt; |
918 | return (char *)endp; |
919 | } |
920 | } |
921 | #endif |
922 | |
8194bf88 |
923 | /* we accumulate digits into an integer; when this becomes too |
924 | * large, we add the total to NV and start again */ |
98994639 |
925 | |
8194bf88 |
926 | while (1) { |
927 | if (isDIGIT(*s)) { |
928 | seen_digit = 1; |
20f6aaab |
929 | old_digit = digit; |
8194bf88 |
930 | digit = *s++ - '0'; |
20f6aaab |
931 | if (seen_dp) |
932 | exp_adjust[1]++; |
98994639 |
933 | |
8194bf88 |
934 | /* don't start counting until we see the first significant |
935 | * digit, eg the 5 in 0.00005... */ |
936 | if (!sig_digits && digit == 0) |
937 | continue; |
938 | |
939 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
940 | /* limits of precision reached */ |
20f6aaab |
941 | if (digit > 5) { |
942 | ++accumulator[seen_dp]; |
943 | } else if (digit == 5) { |
944 | if (old_digit % 2) { /* round to even - Allen */ |
945 | ++accumulator[seen_dp]; |
946 | } |
947 | } |
948 | if (seen_dp) { |
949 | exp_adjust[1]--; |
950 | } else { |
951 | exp_adjust[0]++; |
952 | } |
8194bf88 |
953 | /* skip remaining digits */ |
98994639 |
954 | while (isDIGIT(*s)) { |
98994639 |
955 | ++s; |
20f6aaab |
956 | if (! seen_dp) { |
957 | exp_adjust[0]++; |
958 | } |
98994639 |
959 | } |
960 | /* warn of loss of precision? */ |
98994639 |
961 | } |
8194bf88 |
962 | else { |
20f6aaab |
963 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
964 | /* add accumulator to result and start again */ |
20f6aaab |
965 | result[seen_dp] = S_mulexp10(result[seen_dp], |
966 | exp_acc[seen_dp]) |
967 | + (NV)accumulator[seen_dp]; |
968 | accumulator[seen_dp] = 0; |
969 | exp_acc[seen_dp] = 0; |
98994639 |
970 | } |
20f6aaab |
971 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
972 | ++exp_acc[seen_dp]; |
98994639 |
973 | } |
8194bf88 |
974 | } |
e1ec3a88 |
975 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) { |
8194bf88 |
976 | seen_dp = 1; |
20f6aaab |
977 | if (sig_digits > MAX_SIG_DIGITS) { |
c86f7df5 |
978 | do { |
20f6aaab |
979 | ++s; |
c86f7df5 |
980 | } while (isDIGIT(*s)); |
20f6aaab |
981 | break; |
982 | } |
8194bf88 |
983 | } |
984 | else { |
985 | break; |
98994639 |
986 | } |
987 | } |
988 | |
20f6aaab |
989 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
990 | if (seen_dp) { |
991 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
992 | } |
98994639 |
993 | |
8194bf88 |
994 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
995 | bool expnegative = 0; |
996 | |
997 | ++s; |
998 | switch (*s) { |
999 | case '-': |
1000 | expnegative = 1; |
1001 | /* fall through */ |
1002 | case '+': |
1003 | ++s; |
1004 | } |
1005 | while (isDIGIT(*s)) |
1006 | exponent = exponent * 10 + (*s++ - '0'); |
1007 | if (expnegative) |
1008 | exponent = -exponent; |
1009 | } |
1010 | |
20f6aaab |
1011 | |
1012 | |
98994639 |
1013 | /* now apply the exponent */ |
20f6aaab |
1014 | |
1015 | if (seen_dp) { |
1016 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
1017 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
1018 | } else { |
1019 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
1020 | } |
98994639 |
1021 | |
1022 | /* now apply the sign */ |
1023 | if (negative) |
20f6aaab |
1024 | result[2] = -result[2]; |
a36244b7 |
1025 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
1026 | *value = result[2]; |
73d840c0 |
1027 | return (char *)s; |
98994639 |
1028 | } |
1029 | |
55954f19 |
1030 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) |
1031 | long double |
1032 | Perl_my_modfl(long double x, long double *ip) |
1033 | { |
1034 | *ip = aintl(x); |
1035 | return (x == *ip ? copysignl(0.0L, x) : x - *ip); |
1036 | } |
1037 | #endif |
1038 | |
1039 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) |
1040 | long double |
1041 | Perl_my_frexpl(long double x, int *e) { |
1042 | *e = x == 0.0L ? 0 : ilogbl(x) + 1; |
1043 | return (scalbnl(x, -*e)); |
1044 | } |
1045 | #endif |
66610fdd |
1046 | |
1047 | /* |
ed140128 |
1048 | =for apidoc Perl_signbit |
1049 | |
1050 | Return a non-zero integer if the sign bit on an NV is set, and 0 if |
1051 | it is not. |
1052 | |
1053 | If Configure detects this system has a signbit() that will work with |
1054 | our NVs, then we just use it via the #define in perl.h. Otherwise, |
1055 | fall back on this implementation. As a first pass, this gets everything |
1056 | right except -0.0. Alas, catching -0.0 is the main use for this function, |
1057 | so this is not too helpful yet. Still, at least we have the scaffolding |
1058 | in place to support other systems, should that prove useful. |
1059 | |
1060 | |
1061 | Configure notes: This function is called 'Perl_signbit' instead of a |
1062 | plain 'signbit' because it is easy to imagine a system having a signbit() |
1063 | function or macro that doesn't happen to work with our particular choice |
1064 | of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect |
1065 | the standard system headers to be happy. Also, this is a no-context |
1066 | function (no pTHX_) because Perl_signbit() is usually re-#defined in |
1067 | perl.h as a simple macro call to the system's signbit(). |
1068 | Users should just always call Perl_signbit(). |
1069 | |
1070 | =cut |
1071 | */ |
1072 | #if !defined(HAS_SIGNBIT) |
1073 | int |
1074 | Perl_signbit(NV x) { |
1075 | return (x < 0.0) ? 1 : 0; |
1076 | } |
1077 | #endif |
1078 | |
1079 | /* |
66610fdd |
1080 | * Local variables: |
1081 | * c-indentation-style: bsd |
1082 | * c-basic-offset: 4 |
1083 | * indent-tabs-mode: t |
1084 | * End: |
1085 | * |
37442d52 |
1086 | * ex: set ts=8 sts=4 sw=4 noet: |
1087 | */ |