Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
be3c0a43 |
3 | * Copyright (c) 2001-2002, Larry Wall |
98994639 |
4 | * |
5 | * You may distribute under the terms of either the GNU General Public |
6 | * License or the Artistic License, as specified in the README file. |
7 | * |
8 | */ |
9 | |
10 | /* |
11 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
12 | * wizards count differently to other people." |
13 | */ |
14 | |
ccfc67b7 |
15 | /* |
16 | =head1 Numeric functions |
17 | */ |
18 | |
98994639 |
19 | #include "EXTERN.h" |
20 | #define PERL_IN_NUMERIC_C |
21 | #include "perl.h" |
22 | |
23 | U32 |
24 | Perl_cast_ulong(pTHX_ NV f) |
25 | { |
26 | if (f < 0.0) |
27 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
28 | if (f < U32_MAX_P1) { |
29 | #if CASTFLAGS & 2 |
30 | if (f < U32_MAX_P1_HALF) |
31 | return (U32) f; |
32 | f -= U32_MAX_P1_HALF; |
33 | return ((U32) f) | (1 + U32_MAX >> 1); |
34 | #else |
35 | return (U32) f; |
36 | #endif |
37 | } |
38 | return f > 0 ? U32_MAX : 0 /* NaN */; |
39 | } |
40 | |
41 | I32 |
42 | Perl_cast_i32(pTHX_ NV f) |
43 | { |
44 | if (f < I32_MAX_P1) |
45 | return f < I32_MIN ? I32_MIN : (I32) f; |
46 | if (f < U32_MAX_P1) { |
47 | #if CASTFLAGS & 2 |
48 | if (f < U32_MAX_P1_HALF) |
49 | return (I32)(U32) f; |
50 | f -= U32_MAX_P1_HALF; |
51 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
52 | #else |
53 | return (I32)(U32) f; |
54 | #endif |
55 | } |
56 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
57 | } |
58 | |
59 | IV |
60 | Perl_cast_iv(pTHX_ NV f) |
61 | { |
62 | if (f < IV_MAX_P1) |
63 | return f < IV_MIN ? IV_MIN : (IV) f; |
64 | if (f < UV_MAX_P1) { |
65 | #if CASTFLAGS & 2 |
66 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
67 | if (f < UV_MAX_P1_HALF) |
68 | return (IV)(UV) f; |
69 | f -= UV_MAX_P1_HALF; |
70 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
71 | #else |
72 | return (IV)(UV) f; |
73 | #endif |
74 | } |
75 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
76 | } |
77 | |
78 | UV |
79 | Perl_cast_uv(pTHX_ NV f) |
80 | { |
81 | if (f < 0.0) |
82 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
83 | if (f < UV_MAX_P1) { |
84 | #if CASTFLAGS & 2 |
85 | if (f < UV_MAX_P1_HALF) |
86 | return (UV) f; |
87 | f -= UV_MAX_P1_HALF; |
88 | return ((UV) f) | (1 + UV_MAX >> 1); |
89 | #else |
90 | return (UV) f; |
91 | #endif |
92 | } |
93 | return f > 0 ? UV_MAX : 0 /* NaN */; |
94 | } |
95 | |
96 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) |
97 | /* |
98 | * This hack is to force load of "huge" support from libm.a |
99 | * So it is in perl for (say) POSIX to use. |
100 | * Needed for SunOS with Sun's 'acc' for example. |
101 | */ |
102 | NV |
103 | Perl_huge(void) |
104 | { |
105 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) |
106 | return HUGE_VALL; |
107 | # endif |
108 | return HUGE_VAL; |
109 | } |
110 | #endif |
111 | |
53305cf1 |
112 | /* |
113 | =for apidoc grok_bin |
98994639 |
114 | |
53305cf1 |
115 | converts a string representing a binary number to numeric form. |
116 | |
117 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
118 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
119 | The scan stops at the end of the string, or the first invalid character. |
120 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
121 | output flags. |
122 | |
123 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
124 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
125 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
126 | and writes the value to I<*result> (or the value is discarded if I<result> |
127 | is NULL). |
128 | |
d1be9408 |
129 | The hex number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
130 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
131 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
132 | number may use '_' characters to separate digits. |
133 | |
134 | =cut |
135 | */ |
136 | |
137 | UV |
138 | Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
139 | const char *s = start; |
140 | STRLEN len = *len_p; |
141 | UV value = 0; |
142 | NV value_nv = 0; |
143 | |
144 | const UV max_div_2 = UV_MAX / 2; |
145 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
146 | bool overflowed = FALSE; |
147 | |
a4c04bdc |
148 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
149 | /* strip off leading b or 0b. |
150 | for compatibility silently suffer "b" and "0b" as valid binary |
151 | numbers. */ |
152 | if (len >= 1) { |
153 | if (s[0] == 'b') { |
154 | s++; |
155 | len--; |
156 | } |
157 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
158 | s+=2; |
159 | len-=2; |
160 | } |
161 | } |
53305cf1 |
162 | } |
163 | |
164 | for (; len-- && *s; s++) { |
165 | char bit = *s; |
166 | if (bit == '0' || bit == '1') { |
167 | /* Write it in this wonky order with a goto to attempt to get the |
168 | compiler to make the common case integer-only loop pretty tight. |
169 | With gcc seems to be much straighter code than old scan_bin. */ |
170 | redo: |
171 | if (!overflowed) { |
172 | if (value <= max_div_2) { |
173 | value = (value << 1) | (bit - '0'); |
174 | continue; |
175 | } |
176 | /* Bah. We're just overflowed. */ |
177 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
178 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
179 | "Integer overflow in binary number"); |
180 | overflowed = TRUE; |
181 | value_nv = (NV) value; |
182 | } |
183 | value_nv *= 2.0; |
98994639 |
184 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
185 | * represent a UV this summing of small low-order numbers |
98994639 |
186 | * is a waste of time (because the NV cannot preserve |
187 | * the low-order bits anyway): we could just remember when |
53305cf1 |
188 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
189 | * right amount. */ |
53305cf1 |
190 | value_nv += (NV)(bit - '0'); |
191 | continue; |
192 | } |
193 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
194 | && (bit == '0' || bit == '1')) |
98994639 |
195 | { |
196 | --len; |
197 | ++s; |
53305cf1 |
198 | goto redo; |
98994639 |
199 | } |
53305cf1 |
200 | if (ckWARN(WARN_DIGIT)) |
9014280d |
201 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
202 | "Illegal binary digit '%c' ignored", *s); |
203 | break; |
98994639 |
204 | } |
53305cf1 |
205 | |
206 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
207 | #if UVSIZE > 4 |
53305cf1 |
208 | || (!overflowed && value > 0xffffffff ) |
98994639 |
209 | #endif |
210 | ) { |
211 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
212 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
213 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
214 | } |
215 | *len_p = s - start; |
216 | if (!overflowed) { |
217 | *flags = 0; |
218 | return value; |
98994639 |
219 | } |
53305cf1 |
220 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
221 | if (result) |
222 | *result = value_nv; |
223 | return UV_MAX; |
98994639 |
224 | } |
225 | |
53305cf1 |
226 | /* |
227 | =for apidoc grok_hex |
228 | |
229 | converts a string representing a hex number to numeric form. |
230 | |
231 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
232 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
233 | The scan stops at the end of the string, or the first non-hex-digit character. |
234 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
235 | output flags. |
236 | |
237 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
238 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
239 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
240 | and writes the value to I<*result> (or the value is discarded if I<result> |
241 | is NULL). |
242 | |
d1be9408 |
243 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
244 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
245 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
246 | number may use '_' characters to separate digits. |
247 | |
248 | =cut |
249 | */ |
250 | |
251 | UV |
252 | Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
253 | const char *s = start; |
254 | STRLEN len = *len_p; |
255 | UV value = 0; |
256 | NV value_nv = 0; |
257 | |
258 | const UV max_div_16 = UV_MAX / 16; |
259 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
260 | bool overflowed = FALSE; |
261 | const char *hexdigit; |
98994639 |
262 | |
a4c04bdc |
263 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
264 | /* strip off leading x or 0x. |
265 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
266 | */ |
267 | if (len >= 1) { |
268 | if (s[0] == 'x') { |
269 | s++; |
270 | len--; |
271 | } |
272 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
273 | s+=2; |
274 | len-=2; |
275 | } |
276 | } |
98994639 |
277 | } |
278 | |
279 | for (; len-- && *s; s++) { |
280 | hexdigit = strchr((char *) PL_hexdigit, *s); |
53305cf1 |
281 | if (hexdigit) { |
282 | /* Write it in this wonky order with a goto to attempt to get the |
283 | compiler to make the common case integer-only loop pretty tight. |
284 | With gcc seems to be much straighter code than old scan_hex. */ |
285 | redo: |
286 | if (!overflowed) { |
287 | if (value <= max_div_16) { |
288 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
289 | continue; |
290 | } |
291 | /* Bah. We're just overflowed. */ |
292 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
293 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
294 | "Integer overflow in hexadecimal number"); |
295 | overflowed = TRUE; |
296 | value_nv = (NV) value; |
297 | } |
298 | value_nv *= 16.0; |
299 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
300 | * represent a UV this summing of small low-order numbers |
53305cf1 |
301 | * is a waste of time (because the NV cannot preserve |
302 | * the low-order bits anyway): we could just remember when |
303 | * did we overflow and in the end just multiply value_nv by the |
304 | * right amount of 16-tuples. */ |
305 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
306 | continue; |
307 | } |
308 | if (*s == '_' && len && allow_underscores && s[1] |
98994639 |
309 | && (hexdigit = strchr((char *) PL_hexdigit, s[1]))) |
310 | { |
311 | --len; |
312 | ++s; |
53305cf1 |
313 | goto redo; |
98994639 |
314 | } |
53305cf1 |
315 | if (ckWARN(WARN_DIGIT)) |
9014280d |
316 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
317 | "Illegal hexadecimal digit '%c' ignored", *s); |
318 | break; |
319 | } |
320 | |
321 | if ( ( overflowed && value_nv > 4294967295.0) |
322 | #if UVSIZE > 4 |
323 | || (!overflowed && value > 0xffffffff ) |
324 | #endif |
325 | ) { |
326 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
327 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
328 | "Hexadecimal number > 0xffffffff non-portable"); |
329 | } |
330 | *len_p = s - start; |
331 | if (!overflowed) { |
332 | *flags = 0; |
333 | return value; |
334 | } |
335 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
336 | if (result) |
337 | *result = value_nv; |
338 | return UV_MAX; |
339 | } |
340 | |
341 | /* |
342 | =for apidoc grok_oct |
343 | |
344 | |
345 | =cut |
346 | */ |
347 | |
348 | UV |
349 | Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
350 | const char *s = start; |
351 | STRLEN len = *len_p; |
352 | UV value = 0; |
353 | NV value_nv = 0; |
354 | |
355 | const UV max_div_8 = UV_MAX / 8; |
356 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
357 | bool overflowed = FALSE; |
358 | |
359 | for (; len-- && *s; s++) { |
360 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
361 | out front allows slicker code. */ |
362 | int digit = *s - '0'; |
363 | if (digit >= 0 && digit <= 7) { |
364 | /* Write it in this wonky order with a goto to attempt to get the |
365 | compiler to make the common case integer-only loop pretty tight. |
366 | */ |
367 | redo: |
368 | if (!overflowed) { |
369 | if (value <= max_div_8) { |
370 | value = (value << 3) | digit; |
371 | continue; |
372 | } |
373 | /* Bah. We're just overflowed. */ |
374 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
375 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
376 | "Integer overflow in octal number"); |
377 | overflowed = TRUE; |
378 | value_nv = (NV) value; |
379 | } |
380 | value_nv *= 8.0; |
98994639 |
381 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
382 | * represent a UV this summing of small low-order numbers |
98994639 |
383 | * is a waste of time (because the NV cannot preserve |
384 | * the low-order bits anyway): we could just remember when |
53305cf1 |
385 | * did we overflow and in the end just multiply value_nv by the |
386 | * right amount of 8-tuples. */ |
387 | value_nv += (NV)digit; |
388 | continue; |
389 | } |
390 | if (digit == ('_' - '0') && len && allow_underscores |
391 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
392 | { |
393 | --len; |
394 | ++s; |
395 | goto redo; |
396 | } |
397 | /* Allow \octal to work the DWIM way (that is, stop scanning |
398 | * as soon as non-octal characters are seen, complain only iff |
399 | * someone seems to want to use the digits eight and nine). */ |
400 | if (digit == 8 || digit == 9) { |
401 | if (ckWARN(WARN_DIGIT)) |
9014280d |
402 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
403 | "Illegal octal digit '%c' ignored", *s); |
404 | } |
405 | break; |
98994639 |
406 | } |
53305cf1 |
407 | |
408 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
409 | #if UVSIZE > 4 |
53305cf1 |
410 | || (!overflowed && value > 0xffffffff ) |
98994639 |
411 | #endif |
412 | ) { |
413 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
414 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
415 | "Octal number > 037777777777 non-portable"); |
416 | } |
417 | *len_p = s - start; |
418 | if (!overflowed) { |
419 | *flags = 0; |
420 | return value; |
98994639 |
421 | } |
53305cf1 |
422 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
423 | if (result) |
424 | *result = value_nv; |
425 | return UV_MAX; |
426 | } |
427 | |
428 | /* |
429 | =for apidoc scan_bin |
430 | |
431 | For backwards compatibility. Use C<grok_bin> instead. |
432 | |
433 | =for apidoc scan_hex |
434 | |
435 | For backwards compatibility. Use C<grok_hex> instead. |
436 | |
437 | =for apidoc scan_oct |
438 | |
439 | For backwards compatibility. Use C<grok_oct> instead. |
440 | |
441 | =cut |
442 | */ |
443 | |
444 | NV |
445 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
446 | { |
447 | NV rnv; |
448 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
449 | UV ruv = grok_bin (start, &len, &flags, &rnv); |
450 | |
451 | *retlen = len; |
452 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
453 | } |
454 | |
455 | NV |
456 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
457 | { |
458 | NV rnv; |
459 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
460 | UV ruv = grok_oct (start, &len, &flags, &rnv); |
461 | |
462 | *retlen = len; |
463 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
464 | } |
465 | |
466 | NV |
467 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
468 | { |
469 | NV rnv; |
470 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
471 | UV ruv = grok_hex (start, &len, &flags, &rnv); |
472 | |
473 | *retlen = len; |
474 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
475 | } |
476 | |
477 | /* |
478 | =for apidoc grok_numeric_radix |
479 | |
480 | Scan and skip for a numeric decimal separator (radix). |
481 | |
482 | =cut |
483 | */ |
484 | bool |
485 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
486 | { |
487 | #ifdef USE_LOCALE_NUMERIC |
488 | if (PL_numeric_radix_sv && IN_LOCALE) { |
489 | STRLEN len; |
490 | char* radix = SvPV(PL_numeric_radix_sv, len); |
491 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
492 | *sp += len; |
493 | return TRUE; |
494 | } |
495 | } |
496 | /* always try "." if numeric radix didn't match because |
497 | * we may have data from different locales mixed */ |
498 | #endif |
499 | if (*sp < send && **sp == '.') { |
500 | ++*sp; |
501 | return TRUE; |
502 | } |
503 | return FALSE; |
504 | } |
505 | |
506 | /* |
507 | =for apidoc grok_number |
508 | |
509 | Recognise (or not) a number. The type of the number is returned |
510 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
511 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
512 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
513 | |
514 | If the value of the number can fit an in UV, it is returned in the *valuep |
515 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
516 | will never be set unless *valuep is valid, but *valuep may have been assigned |
517 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
518 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
519 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
520 | |
521 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
522 | seen (in which case *valuep gives the true value truncated to an integer), and |
523 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
524 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
525 | number is larger than a UV. |
98994639 |
526 | |
527 | =cut |
528 | */ |
529 | int |
530 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
531 | { |
60939fb8 |
532 | const char *s = pv; |
533 | const char *send = pv + len; |
534 | const UV max_div_10 = UV_MAX / 10; |
535 | const char max_mod_10 = UV_MAX % 10; |
536 | int numtype = 0; |
537 | int sawinf = 0; |
aa8b85de |
538 | int sawnan = 0; |
60939fb8 |
539 | |
540 | while (s < send && isSPACE(*s)) |
541 | s++; |
542 | if (s == send) { |
543 | return 0; |
544 | } else if (*s == '-') { |
545 | s++; |
546 | numtype = IS_NUMBER_NEG; |
547 | } |
548 | else if (*s == '+') |
549 | s++; |
550 | |
551 | if (s == send) |
552 | return 0; |
553 | |
554 | /* next must be digit or the radix separator or beginning of infinity */ |
555 | if (isDIGIT(*s)) { |
556 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
557 | overflow. */ |
558 | UV value = *s - '0'; |
559 | /* This construction seems to be more optimiser friendly. |
560 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
561 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
562 | In theory the optimiser could deduce how far to unroll the loop |
563 | before checking for overflow. */ |
58bb9ec3 |
564 | if (++s < send) { |
565 | int digit = *s - '0'; |
60939fb8 |
566 | if (digit >= 0 && digit <= 9) { |
567 | value = value * 10 + digit; |
58bb9ec3 |
568 | if (++s < send) { |
569 | digit = *s - '0'; |
60939fb8 |
570 | if (digit >= 0 && digit <= 9) { |
571 | value = value * 10 + digit; |
58bb9ec3 |
572 | if (++s < send) { |
573 | digit = *s - '0'; |
60939fb8 |
574 | if (digit >= 0 && digit <= 9) { |
575 | value = value * 10 + digit; |
58bb9ec3 |
576 | if (++s < send) { |
577 | digit = *s - '0'; |
60939fb8 |
578 | if (digit >= 0 && digit <= 9) { |
579 | value = value * 10 + digit; |
58bb9ec3 |
580 | if (++s < send) { |
581 | digit = *s - '0'; |
60939fb8 |
582 | if (digit >= 0 && digit <= 9) { |
583 | value = value * 10 + digit; |
58bb9ec3 |
584 | if (++s < send) { |
585 | digit = *s - '0'; |
60939fb8 |
586 | if (digit >= 0 && digit <= 9) { |
587 | value = value * 10 + digit; |
58bb9ec3 |
588 | if (++s < send) { |
589 | digit = *s - '0'; |
60939fb8 |
590 | if (digit >= 0 && digit <= 9) { |
591 | value = value * 10 + digit; |
58bb9ec3 |
592 | if (++s < send) { |
593 | digit = *s - '0'; |
60939fb8 |
594 | if (digit >= 0 && digit <= 9) { |
595 | value = value * 10 + digit; |
58bb9ec3 |
596 | if (++s < send) { |
60939fb8 |
597 | /* Now got 9 digits, so need to check |
598 | each time for overflow. */ |
58bb9ec3 |
599 | digit = *s - '0'; |
60939fb8 |
600 | while (digit >= 0 && digit <= 9 |
601 | && (value < max_div_10 |
602 | || (value == max_div_10 |
603 | && digit <= max_mod_10))) { |
604 | value = value * 10 + digit; |
58bb9ec3 |
605 | if (++s < send) |
606 | digit = *s - '0'; |
60939fb8 |
607 | else |
608 | break; |
609 | } |
610 | if (digit >= 0 && digit <= 9 |
51bd16da |
611 | && (s < send)) { |
60939fb8 |
612 | /* value overflowed. |
613 | skip the remaining digits, don't |
614 | worry about setting *valuep. */ |
615 | do { |
616 | s++; |
617 | } while (s < send && isDIGIT(*s)); |
618 | numtype |= |
619 | IS_NUMBER_GREATER_THAN_UV_MAX; |
620 | goto skip_value; |
621 | } |
622 | } |
623 | } |
98994639 |
624 | } |
60939fb8 |
625 | } |
626 | } |
627 | } |
628 | } |
629 | } |
630 | } |
631 | } |
632 | } |
633 | } |
634 | } |
635 | } |
98994639 |
636 | } |
60939fb8 |
637 | } |
98994639 |
638 | } |
60939fb8 |
639 | numtype |= IS_NUMBER_IN_UV; |
640 | if (valuep) |
641 | *valuep = value; |
642 | |
643 | skip_value: |
644 | if (GROK_NUMERIC_RADIX(&s, send)) { |
645 | numtype |= IS_NUMBER_NOT_INT; |
646 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
647 | s++; |
98994639 |
648 | } |
60939fb8 |
649 | } |
650 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
651 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
652 | /* no digits before the radix means we need digits after it */ |
653 | if (s < send && isDIGIT(*s)) { |
654 | do { |
655 | s++; |
656 | } while (s < send && isDIGIT(*s)); |
657 | if (valuep) { |
658 | /* integer approximation is valid - it's 0. */ |
659 | *valuep = 0; |
660 | } |
98994639 |
661 | } |
60939fb8 |
662 | else |
663 | return 0; |
664 | } else if (*s == 'I' || *s == 'i') { |
665 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
666 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
667 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
668 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
669 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
670 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
671 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
672 | s++; |
98994639 |
673 | } |
60939fb8 |
674 | sawinf = 1; |
aa8b85de |
675 | } else if (*s == 'N' || *s == 'n') { |
676 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
677 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
678 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
679 | s++; |
680 | sawnan = 1; |
681 | } else |
98994639 |
682 | return 0; |
60939fb8 |
683 | |
684 | if (sawinf) { |
685 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
686 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
687 | } else if (sawnan) { |
688 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
689 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
690 | } else if (s < send) { |
691 | /* we can have an optional exponent part */ |
692 | if (*s == 'e' || *s == 'E') { |
693 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
694 | numtype &= IS_NUMBER_NEG; |
695 | numtype |= IS_NUMBER_NOT_INT; |
696 | s++; |
697 | if (s < send && (*s == '-' || *s == '+')) |
698 | s++; |
699 | if (s < send && isDIGIT(*s)) { |
700 | do { |
701 | s++; |
702 | } while (s < send && isDIGIT(*s)); |
703 | } |
704 | else |
705 | return 0; |
706 | } |
707 | } |
708 | while (s < send && isSPACE(*s)) |
709 | s++; |
710 | if (s >= send) |
aa8b85de |
711 | return numtype; |
60939fb8 |
712 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
713 | if (valuep) |
714 | *valuep = 0; |
715 | return IS_NUMBER_IN_UV; |
716 | } |
717 | return 0; |
98994639 |
718 | } |
719 | |
720 | NV |
721 | S_mulexp10(NV value, I32 exponent) |
722 | { |
723 | NV result = 1.0; |
724 | NV power = 10.0; |
725 | bool negative = 0; |
726 | I32 bit; |
727 | |
728 | if (exponent == 0) |
729 | return value; |
20f6aaab |
730 | if (value == 0) |
731 | return 0; |
87032ba1 |
732 | |
24866caa |
733 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
734 | * and that format does not have *easy* capabilities [1] for |
24866caa |
735 | * overflowing doubles 'silently' as IEEE fp does. We also need |
736 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
737 | * range is much larger than D_FLOAT it still doesn't do silent |
738 | * overflow. Therefore we need to detect early whether we would |
739 | * overflow (this is the behaviour of the native string-to-float |
740 | * conversion routines, and therefore of native applications, too). |
67597c89 |
741 | * |
24866caa |
742 | * [1] Trying to establish a condition handler to trap floating point |
743 | * exceptions is not a good idea. */ |
87032ba1 |
744 | |
745 | /* In UNICOS and in certain Cray models (such as T90) there is no |
746 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
747 | * There is something you can do if you are willing to use some |
748 | * inline assembler: the instruction is called DFI-- but that will |
749 | * disable *all* floating point interrupts, a little bit too large |
750 | * a hammer. Therefore we need to catch potential overflows before |
751 | * it's too late. */ |
353813d9 |
752 | |
753 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
754 | STMT_START { |
755 | NV exp_v = log10(value); |
756 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
757 | return NV_MAX; |
758 | if (exponent < 0) { |
759 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
760 | return 0.0; |
761 | while (-exponent >= NV_MAX_10_EXP) { |
762 | /* combination does not overflow, but 10^(-exponent) does */ |
763 | value /= 10; |
764 | ++exponent; |
765 | } |
766 | } |
767 | } STMT_END; |
87032ba1 |
768 | #endif |
769 | |
353813d9 |
770 | if (exponent < 0) { |
771 | negative = 1; |
772 | exponent = -exponent; |
773 | } |
98994639 |
774 | for (bit = 1; exponent; bit <<= 1) { |
775 | if (exponent & bit) { |
776 | exponent ^= bit; |
777 | result *= power; |
236f0012 |
778 | /* Floating point exceptions are supposed to be turned off, |
779 | * but if we're obviously done, don't risk another iteration. |
780 | */ |
781 | if (exponent == 0) break; |
98994639 |
782 | } |
783 | power *= power; |
784 | } |
785 | return negative ? value / result : value * result; |
786 | } |
787 | |
788 | NV |
789 | Perl_my_atof(pTHX_ const char* s) |
790 | { |
791 | NV x = 0.0; |
792 | #ifdef USE_LOCALE_NUMERIC |
793 | if (PL_numeric_local && IN_LOCALE) { |
794 | NV y; |
795 | |
796 | /* Scan the number twice; once using locale and once without; |
797 | * choose the larger result (in absolute value). */ |
a36244b7 |
798 | Perl_atof2(s, x); |
98994639 |
799 | SET_NUMERIC_STANDARD(); |
a36244b7 |
800 | Perl_atof2(s, y); |
98994639 |
801 | SET_NUMERIC_LOCAL(); |
802 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
803 | return y; |
804 | } |
805 | else |
a36244b7 |
806 | Perl_atof2(s, x); |
98994639 |
807 | #else |
a36244b7 |
808 | Perl_atof2(s, x); |
98994639 |
809 | #endif |
810 | return x; |
811 | } |
812 | |
813 | char* |
814 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
815 | { |
20f6aaab |
816 | NV result[3] = {0.0, 0.0, 0.0}; |
98994639 |
817 | char* s = (char*)orig; |
a36244b7 |
818 | #ifdef USE_PERL_ATOF |
20f6aaab |
819 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
820 | bool negative = 0; |
98994639 |
821 | char* send = s + strlen(orig) - 1; |
8194bf88 |
822 | bool seen_digit = 0; |
20f6aaab |
823 | I32 exp_adjust[2] = {0,0}; |
824 | I32 exp_acc[2] = {-1, -1}; |
825 | /* the current exponent adjust for the accumulators */ |
98994639 |
826 | I32 exponent = 0; |
8194bf88 |
827 | I32 seen_dp = 0; |
20f6aaab |
828 | I32 digit = 0; |
829 | I32 old_digit = 0; |
8194bf88 |
830 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
831 | |
832 | /* There is no point in processing more significant digits |
833 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
834 | * while we need an upper-bound value. We add 2 to account for this; |
835 | * since it will have been conservative on both the first and last digit. |
836 | * For example a 32-bit mantissa with an exponent of 4 would have |
837 | * exact values in the set |
838 | * 4 |
839 | * 8 |
840 | * .. |
841 | * 17179869172 |
842 | * 17179869176 |
843 | * 17179869180 |
844 | * |
845 | * where for the purposes of calculating NV_DIG we would have to discount |
846 | * both the first and last digit, since neither can hold all values from |
847 | * 0..9; but for calculating the value we must examine those two digits. |
848 | */ |
849 | #define MAX_SIG_DIGITS (NV_DIG+2) |
850 | |
851 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
852 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
853 | |
96a05aee |
854 | /* leading whitespace */ |
855 | while (isSPACE(*s)) |
856 | ++s; |
857 | |
98994639 |
858 | /* sign */ |
859 | switch (*s) { |
860 | case '-': |
861 | negative = 1; |
862 | /* fall through */ |
863 | case '+': |
864 | ++s; |
865 | } |
866 | |
8194bf88 |
867 | /* we accumulate digits into an integer; when this becomes too |
868 | * large, we add the total to NV and start again */ |
98994639 |
869 | |
8194bf88 |
870 | while (1) { |
871 | if (isDIGIT(*s)) { |
872 | seen_digit = 1; |
20f6aaab |
873 | old_digit = digit; |
8194bf88 |
874 | digit = *s++ - '0'; |
20f6aaab |
875 | if (seen_dp) |
876 | exp_adjust[1]++; |
98994639 |
877 | |
8194bf88 |
878 | /* don't start counting until we see the first significant |
879 | * digit, eg the 5 in 0.00005... */ |
880 | if (!sig_digits && digit == 0) |
881 | continue; |
882 | |
883 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
884 | /* limits of precision reached */ |
20f6aaab |
885 | if (digit > 5) { |
886 | ++accumulator[seen_dp]; |
887 | } else if (digit == 5) { |
888 | if (old_digit % 2) { /* round to even - Allen */ |
889 | ++accumulator[seen_dp]; |
890 | } |
891 | } |
892 | if (seen_dp) { |
893 | exp_adjust[1]--; |
894 | } else { |
895 | exp_adjust[0]++; |
896 | } |
8194bf88 |
897 | /* skip remaining digits */ |
98994639 |
898 | while (isDIGIT(*s)) { |
98994639 |
899 | ++s; |
20f6aaab |
900 | if (! seen_dp) { |
901 | exp_adjust[0]++; |
902 | } |
98994639 |
903 | } |
904 | /* warn of loss of precision? */ |
98994639 |
905 | } |
8194bf88 |
906 | else { |
20f6aaab |
907 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
908 | /* add accumulator to result and start again */ |
20f6aaab |
909 | result[seen_dp] = S_mulexp10(result[seen_dp], |
910 | exp_acc[seen_dp]) |
911 | + (NV)accumulator[seen_dp]; |
912 | accumulator[seen_dp] = 0; |
913 | exp_acc[seen_dp] = 0; |
98994639 |
914 | } |
20f6aaab |
915 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
916 | ++exp_acc[seen_dp]; |
98994639 |
917 | } |
8194bf88 |
918 | } |
919 | else if (!seen_dp && GROK_NUMERIC_RADIX((const char **)&s, send)) { |
920 | seen_dp = 1; |
20f6aaab |
921 | if (sig_digits > MAX_SIG_DIGITS) { |
922 | ++s; |
923 | while (isDIGIT(*s)) { |
924 | ++s; |
925 | } |
926 | break; |
927 | } |
8194bf88 |
928 | } |
929 | else { |
930 | break; |
98994639 |
931 | } |
932 | } |
933 | |
20f6aaab |
934 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
935 | if (seen_dp) { |
936 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
937 | } |
98994639 |
938 | |
8194bf88 |
939 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
940 | bool expnegative = 0; |
941 | |
942 | ++s; |
943 | switch (*s) { |
944 | case '-': |
945 | expnegative = 1; |
946 | /* fall through */ |
947 | case '+': |
948 | ++s; |
949 | } |
950 | while (isDIGIT(*s)) |
951 | exponent = exponent * 10 + (*s++ - '0'); |
952 | if (expnegative) |
953 | exponent = -exponent; |
954 | } |
955 | |
20f6aaab |
956 | |
957 | |
98994639 |
958 | /* now apply the exponent */ |
20f6aaab |
959 | |
960 | if (seen_dp) { |
961 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
962 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
963 | } else { |
964 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
965 | } |
98994639 |
966 | |
967 | /* now apply the sign */ |
968 | if (negative) |
20f6aaab |
969 | result[2] = -result[2]; |
a36244b7 |
970 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
971 | *value = result[2]; |
98994639 |
972 | return s; |
973 | } |
974 | |