Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
4bb101f2 |
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
1d325971 |
4 | * 2000, 2001, 2002, 2003, 2005 by Larry Wall and others |
98994639 |
5 | * |
6 | * You may distribute under the terms of either the GNU General Public |
7 | * License or the Artistic License, as specified in the README file. |
8 | * |
9 | */ |
10 | |
11 | /* |
12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
13 | * wizards count differently to other people." |
14 | */ |
15 | |
ccfc67b7 |
16 | /* |
17 | =head1 Numeric functions |
166f8a29 |
18 | |
19 | This file contains all the stuff needed by perl for manipulating numeric |
20 | values, including such things as replacements for the OS's atof() function |
21 | |
22 | =cut |
23 | |
ccfc67b7 |
24 | */ |
25 | |
98994639 |
26 | #include "EXTERN.h" |
27 | #define PERL_IN_NUMERIC_C |
28 | #include "perl.h" |
29 | |
30 | U32 |
31 | Perl_cast_ulong(pTHX_ NV f) |
32 | { |
33 | if (f < 0.0) |
34 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
35 | if (f < U32_MAX_P1) { |
36 | #if CASTFLAGS & 2 |
37 | if (f < U32_MAX_P1_HALF) |
38 | return (U32) f; |
39 | f -= U32_MAX_P1_HALF; |
40 | return ((U32) f) | (1 + U32_MAX >> 1); |
41 | #else |
42 | return (U32) f; |
43 | #endif |
44 | } |
45 | return f > 0 ? U32_MAX : 0 /* NaN */; |
46 | } |
47 | |
48 | I32 |
49 | Perl_cast_i32(pTHX_ NV f) |
50 | { |
51 | if (f < I32_MAX_P1) |
52 | return f < I32_MIN ? I32_MIN : (I32) f; |
53 | if (f < U32_MAX_P1) { |
54 | #if CASTFLAGS & 2 |
55 | if (f < U32_MAX_P1_HALF) |
56 | return (I32)(U32) f; |
57 | f -= U32_MAX_P1_HALF; |
58 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
59 | #else |
60 | return (I32)(U32) f; |
61 | #endif |
62 | } |
63 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
64 | } |
65 | |
66 | IV |
67 | Perl_cast_iv(pTHX_ NV f) |
68 | { |
69 | if (f < IV_MAX_P1) |
70 | return f < IV_MIN ? IV_MIN : (IV) f; |
71 | if (f < UV_MAX_P1) { |
72 | #if CASTFLAGS & 2 |
73 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
74 | if (f < UV_MAX_P1_HALF) |
75 | return (IV)(UV) f; |
76 | f -= UV_MAX_P1_HALF; |
77 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
78 | #else |
79 | return (IV)(UV) f; |
80 | #endif |
81 | } |
82 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
83 | } |
84 | |
85 | UV |
86 | Perl_cast_uv(pTHX_ NV f) |
87 | { |
88 | if (f < 0.0) |
89 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
90 | if (f < UV_MAX_P1) { |
91 | #if CASTFLAGS & 2 |
92 | if (f < UV_MAX_P1_HALF) |
93 | return (UV) f; |
94 | f -= UV_MAX_P1_HALF; |
95 | return ((UV) f) | (1 + UV_MAX >> 1); |
96 | #else |
97 | return (UV) f; |
98 | #endif |
99 | } |
100 | return f > 0 ? UV_MAX : 0 /* NaN */; |
101 | } |
102 | |
53305cf1 |
103 | /* |
104 | =for apidoc grok_bin |
98994639 |
105 | |
53305cf1 |
106 | converts a string representing a binary number to numeric form. |
107 | |
108 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
109 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
110 | The scan stops at the end of the string, or the first invalid character. |
7b667b5f |
111 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
112 | invalid character will also trigger a warning. |
113 | On return I<*len> is set to the length of the scanned string, |
114 | and I<*flags> gives output flags. |
53305cf1 |
115 | |
7fc63493 |
116 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear, |
53305cf1 |
117 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
118 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
119 | and writes the value to I<*result> (or the value is discarded if I<result> |
120 | is NULL). |
121 | |
7b667b5f |
122 | The binary number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
123 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
124 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
125 | number may use '_' characters to separate digits. |
126 | |
127 | =cut |
128 | */ |
129 | |
130 | UV |
7fc63493 |
131 | Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
132 | const char *s = start; |
133 | STRLEN len = *len_p; |
134 | UV value = 0; |
135 | NV value_nv = 0; |
136 | |
137 | const UV max_div_2 = UV_MAX / 2; |
585ec06d |
138 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
139 | bool overflowed = FALSE; |
7fc63493 |
140 | char bit; |
53305cf1 |
141 | |
a4c04bdc |
142 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
143 | /* strip off leading b or 0b. |
144 | for compatibility silently suffer "b" and "0b" as valid binary |
145 | numbers. */ |
146 | if (len >= 1) { |
147 | if (s[0] == 'b') { |
148 | s++; |
149 | len--; |
150 | } |
151 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
152 | s+=2; |
153 | len-=2; |
154 | } |
155 | } |
53305cf1 |
156 | } |
157 | |
7fc63493 |
158 | for (; len-- && (bit = *s); s++) { |
53305cf1 |
159 | if (bit == '0' || bit == '1') { |
160 | /* Write it in this wonky order with a goto to attempt to get the |
161 | compiler to make the common case integer-only loop pretty tight. |
162 | With gcc seems to be much straighter code than old scan_bin. */ |
163 | redo: |
164 | if (!overflowed) { |
165 | if (value <= max_div_2) { |
166 | value = (value << 1) | (bit - '0'); |
167 | continue; |
168 | } |
169 | /* Bah. We're just overflowed. */ |
170 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
171 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
172 | "Integer overflow in binary number"); |
173 | overflowed = TRUE; |
174 | value_nv = (NV) value; |
175 | } |
176 | value_nv *= 2.0; |
98994639 |
177 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
178 | * represent a UV this summing of small low-order numbers |
98994639 |
179 | * is a waste of time (because the NV cannot preserve |
180 | * the low-order bits anyway): we could just remember when |
53305cf1 |
181 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
182 | * right amount. */ |
53305cf1 |
183 | value_nv += (NV)(bit - '0'); |
184 | continue; |
185 | } |
186 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
187 | && (bit == '0' || bit == '1')) |
98994639 |
188 | { |
189 | --len; |
190 | ++s; |
53305cf1 |
191 | goto redo; |
98994639 |
192 | } |
94dd8549 |
193 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
194 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
195 | "Illegal binary digit '%c' ignored", *s); |
196 | break; |
98994639 |
197 | } |
53305cf1 |
198 | |
199 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
200 | #if UVSIZE > 4 |
53305cf1 |
201 | || (!overflowed && value > 0xffffffff ) |
98994639 |
202 | #endif |
203 | ) { |
204 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
205 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
206 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
207 | } |
208 | *len_p = s - start; |
209 | if (!overflowed) { |
210 | *flags = 0; |
211 | return value; |
98994639 |
212 | } |
53305cf1 |
213 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
214 | if (result) |
215 | *result = value_nv; |
216 | return UV_MAX; |
98994639 |
217 | } |
218 | |
53305cf1 |
219 | /* |
220 | =for apidoc grok_hex |
221 | |
222 | converts a string representing a hex number to numeric form. |
223 | |
224 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
225 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
7b667b5f |
226 | The scan stops at the end of the string, or the first invalid character. |
227 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
228 | invalid character will also trigger a warning. |
229 | On return I<*len> is set to the length of the scanned string, |
230 | and I<*flags> gives output flags. |
53305cf1 |
231 | |
232 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
233 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
234 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
235 | and writes the value to I<*result> (or the value is discarded if I<result> |
236 | is NULL). |
237 | |
d1be9408 |
238 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
239 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
240 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
241 | number may use '_' characters to separate digits. |
242 | |
243 | =cut |
244 | */ |
245 | |
246 | UV |
7fc63493 |
247 | Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
27da23d5 |
248 | dVAR; |
53305cf1 |
249 | const char *s = start; |
250 | STRLEN len = *len_p; |
251 | UV value = 0; |
252 | NV value_nv = 0; |
253 | |
254 | const UV max_div_16 = UV_MAX / 16; |
585ec06d |
255 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
256 | bool overflowed = FALSE; |
98994639 |
257 | |
a4c04bdc |
258 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
259 | /* strip off leading x or 0x. |
260 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
261 | */ |
262 | if (len >= 1) { |
263 | if (s[0] == 'x') { |
264 | s++; |
265 | len--; |
266 | } |
267 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
268 | s+=2; |
269 | len-=2; |
270 | } |
271 | } |
98994639 |
272 | } |
273 | |
274 | for (; len-- && *s; s++) { |
a3b680e6 |
275 | const char *hexdigit = strchr(PL_hexdigit, *s); |
53305cf1 |
276 | if (hexdigit) { |
277 | /* Write it in this wonky order with a goto to attempt to get the |
278 | compiler to make the common case integer-only loop pretty tight. |
279 | With gcc seems to be much straighter code than old scan_hex. */ |
280 | redo: |
281 | if (!overflowed) { |
282 | if (value <= max_div_16) { |
283 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
284 | continue; |
285 | } |
286 | /* Bah. We're just overflowed. */ |
287 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
288 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
289 | "Integer overflow in hexadecimal number"); |
290 | overflowed = TRUE; |
291 | value_nv = (NV) value; |
292 | } |
293 | value_nv *= 16.0; |
294 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
295 | * represent a UV this summing of small low-order numbers |
53305cf1 |
296 | * is a waste of time (because the NV cannot preserve |
297 | * the low-order bits anyway): we could just remember when |
298 | * did we overflow and in the end just multiply value_nv by the |
299 | * right amount of 16-tuples. */ |
300 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
301 | continue; |
302 | } |
303 | if (*s == '_' && len && allow_underscores && s[1] |
e1ec3a88 |
304 | && (hexdigit = strchr(PL_hexdigit, s[1]))) |
98994639 |
305 | { |
306 | --len; |
307 | ++s; |
53305cf1 |
308 | goto redo; |
98994639 |
309 | } |
94dd8549 |
310 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
311 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
312 | "Illegal hexadecimal digit '%c' ignored", *s); |
313 | break; |
314 | } |
315 | |
316 | if ( ( overflowed && value_nv > 4294967295.0) |
317 | #if UVSIZE > 4 |
318 | || (!overflowed && value > 0xffffffff ) |
319 | #endif |
320 | ) { |
321 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
322 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
323 | "Hexadecimal number > 0xffffffff non-portable"); |
324 | } |
325 | *len_p = s - start; |
326 | if (!overflowed) { |
327 | *flags = 0; |
328 | return value; |
329 | } |
330 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
331 | if (result) |
332 | *result = value_nv; |
333 | return UV_MAX; |
334 | } |
335 | |
336 | /* |
337 | =for apidoc grok_oct |
338 | |
7b667b5f |
339 | converts a string representing an octal number to numeric form. |
340 | |
341 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
342 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
343 | The scan stops at the end of the string, or the first invalid character. |
344 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
345 | invalid character will also trigger a warning. |
346 | On return I<*len> is set to the length of the scanned string, |
347 | and I<*flags> gives output flags. |
348 | |
349 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
350 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct> |
351 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
352 | and writes the value to I<*result> (or the value is discarded if I<result> |
353 | is NULL). |
354 | |
355 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal |
356 | number may use '_' characters to separate digits. |
53305cf1 |
357 | |
358 | =cut |
359 | */ |
360 | |
361 | UV |
7fc63493 |
362 | Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
363 | const char *s = start; |
364 | STRLEN len = *len_p; |
365 | UV value = 0; |
366 | NV value_nv = 0; |
367 | |
368 | const UV max_div_8 = UV_MAX / 8; |
585ec06d |
369 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
370 | bool overflowed = FALSE; |
371 | |
372 | for (; len-- && *s; s++) { |
373 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
374 | out front allows slicker code. */ |
375 | int digit = *s - '0'; |
376 | if (digit >= 0 && digit <= 7) { |
377 | /* Write it in this wonky order with a goto to attempt to get the |
378 | compiler to make the common case integer-only loop pretty tight. |
379 | */ |
380 | redo: |
381 | if (!overflowed) { |
382 | if (value <= max_div_8) { |
383 | value = (value << 3) | digit; |
384 | continue; |
385 | } |
386 | /* Bah. We're just overflowed. */ |
387 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
388 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
389 | "Integer overflow in octal number"); |
390 | overflowed = TRUE; |
391 | value_nv = (NV) value; |
392 | } |
393 | value_nv *= 8.0; |
98994639 |
394 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
395 | * represent a UV this summing of small low-order numbers |
98994639 |
396 | * is a waste of time (because the NV cannot preserve |
397 | * the low-order bits anyway): we could just remember when |
53305cf1 |
398 | * did we overflow and in the end just multiply value_nv by the |
399 | * right amount of 8-tuples. */ |
400 | value_nv += (NV)digit; |
401 | continue; |
402 | } |
403 | if (digit == ('_' - '0') && len && allow_underscores |
404 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
405 | { |
406 | --len; |
407 | ++s; |
408 | goto redo; |
409 | } |
410 | /* Allow \octal to work the DWIM way (that is, stop scanning |
7b667b5f |
411 | * as soon as non-octal characters are seen, complain only if |
53305cf1 |
412 | * someone seems to want to use the digits eight and nine). */ |
413 | if (digit == 8 || digit == 9) { |
94dd8549 |
414 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
415 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
416 | "Illegal octal digit '%c' ignored", *s); |
417 | } |
418 | break; |
98994639 |
419 | } |
53305cf1 |
420 | |
421 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
422 | #if UVSIZE > 4 |
53305cf1 |
423 | || (!overflowed && value > 0xffffffff ) |
98994639 |
424 | #endif |
425 | ) { |
426 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
427 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
428 | "Octal number > 037777777777 non-portable"); |
429 | } |
430 | *len_p = s - start; |
431 | if (!overflowed) { |
432 | *flags = 0; |
433 | return value; |
98994639 |
434 | } |
53305cf1 |
435 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
436 | if (result) |
437 | *result = value_nv; |
438 | return UV_MAX; |
439 | } |
440 | |
441 | /* |
442 | =for apidoc scan_bin |
443 | |
444 | For backwards compatibility. Use C<grok_bin> instead. |
445 | |
446 | =for apidoc scan_hex |
447 | |
448 | For backwards compatibility. Use C<grok_hex> instead. |
449 | |
450 | =for apidoc scan_oct |
451 | |
452 | For backwards compatibility. Use C<grok_oct> instead. |
453 | |
454 | =cut |
455 | */ |
456 | |
457 | NV |
73d840c0 |
458 | Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
459 | { |
460 | NV rnv; |
461 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
462 | const UV ruv = grok_bin (start, &len, &flags, &rnv); |
53305cf1 |
463 | |
464 | *retlen = len; |
465 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
466 | } |
467 | |
468 | NV |
73d840c0 |
469 | Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
470 | { |
471 | NV rnv; |
472 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
473 | const UV ruv = grok_oct (start, &len, &flags, &rnv); |
53305cf1 |
474 | |
475 | *retlen = len; |
476 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
477 | } |
478 | |
479 | NV |
73d840c0 |
480 | Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
481 | { |
482 | NV rnv; |
483 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
484 | const UV ruv = grok_hex (start, &len, &flags, &rnv); |
53305cf1 |
485 | |
486 | *retlen = len; |
487 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
488 | } |
489 | |
490 | /* |
491 | =for apidoc grok_numeric_radix |
492 | |
493 | Scan and skip for a numeric decimal separator (radix). |
494 | |
495 | =cut |
496 | */ |
497 | bool |
498 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
499 | { |
500 | #ifdef USE_LOCALE_NUMERIC |
501 | if (PL_numeric_radix_sv && IN_LOCALE) { |
502 | STRLEN len; |
c4420975 |
503 | const char * const radix = SvPV(PL_numeric_radix_sv, len); |
98994639 |
504 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
505 | *sp += len; |
506 | return TRUE; |
507 | } |
508 | } |
509 | /* always try "." if numeric radix didn't match because |
510 | * we may have data from different locales mixed */ |
511 | #endif |
512 | if (*sp < send && **sp == '.') { |
513 | ++*sp; |
514 | return TRUE; |
515 | } |
516 | return FALSE; |
517 | } |
518 | |
519 | /* |
520 | =for apidoc grok_number |
521 | |
522 | Recognise (or not) a number. The type of the number is returned |
523 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
524 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
525 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
526 | |
527 | If the value of the number can fit an in UV, it is returned in the *valuep |
528 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
529 | will never be set unless *valuep is valid, but *valuep may have been assigned |
530 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
531 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
532 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
533 | |
534 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
535 | seen (in which case *valuep gives the true value truncated to an integer), and |
536 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
537 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
538 | number is larger than a UV. |
98994639 |
539 | |
540 | =cut |
541 | */ |
542 | int |
543 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
544 | { |
60939fb8 |
545 | const char *s = pv; |
c4420975 |
546 | const char * const send = pv + len; |
60939fb8 |
547 | const UV max_div_10 = UV_MAX / 10; |
548 | const char max_mod_10 = UV_MAX % 10; |
549 | int numtype = 0; |
550 | int sawinf = 0; |
aa8b85de |
551 | int sawnan = 0; |
60939fb8 |
552 | |
553 | while (s < send && isSPACE(*s)) |
554 | s++; |
555 | if (s == send) { |
556 | return 0; |
557 | } else if (*s == '-') { |
558 | s++; |
559 | numtype = IS_NUMBER_NEG; |
560 | } |
561 | else if (*s == '+') |
562 | s++; |
563 | |
564 | if (s == send) |
565 | return 0; |
566 | |
567 | /* next must be digit or the radix separator or beginning of infinity */ |
568 | if (isDIGIT(*s)) { |
569 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
570 | overflow. */ |
571 | UV value = *s - '0'; |
572 | /* This construction seems to be more optimiser friendly. |
573 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
574 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
575 | In theory the optimiser could deduce how far to unroll the loop |
576 | before checking for overflow. */ |
58bb9ec3 |
577 | if (++s < send) { |
578 | int digit = *s - '0'; |
60939fb8 |
579 | if (digit >= 0 && digit <= 9) { |
580 | value = value * 10 + digit; |
58bb9ec3 |
581 | if (++s < send) { |
582 | digit = *s - '0'; |
60939fb8 |
583 | if (digit >= 0 && digit <= 9) { |
584 | value = value * 10 + digit; |
58bb9ec3 |
585 | if (++s < send) { |
586 | digit = *s - '0'; |
60939fb8 |
587 | if (digit >= 0 && digit <= 9) { |
588 | value = value * 10 + digit; |
58bb9ec3 |
589 | if (++s < send) { |
590 | digit = *s - '0'; |
60939fb8 |
591 | if (digit >= 0 && digit <= 9) { |
592 | value = value * 10 + digit; |
58bb9ec3 |
593 | if (++s < send) { |
594 | digit = *s - '0'; |
60939fb8 |
595 | if (digit >= 0 && digit <= 9) { |
596 | value = value * 10 + digit; |
58bb9ec3 |
597 | if (++s < send) { |
598 | digit = *s - '0'; |
60939fb8 |
599 | if (digit >= 0 && digit <= 9) { |
600 | value = value * 10 + digit; |
58bb9ec3 |
601 | if (++s < send) { |
602 | digit = *s - '0'; |
60939fb8 |
603 | if (digit >= 0 && digit <= 9) { |
604 | value = value * 10 + digit; |
58bb9ec3 |
605 | if (++s < send) { |
606 | digit = *s - '0'; |
60939fb8 |
607 | if (digit >= 0 && digit <= 9) { |
608 | value = value * 10 + digit; |
58bb9ec3 |
609 | if (++s < send) { |
60939fb8 |
610 | /* Now got 9 digits, so need to check |
611 | each time for overflow. */ |
58bb9ec3 |
612 | digit = *s - '0'; |
60939fb8 |
613 | while (digit >= 0 && digit <= 9 |
614 | && (value < max_div_10 |
615 | || (value == max_div_10 |
616 | && digit <= max_mod_10))) { |
617 | value = value * 10 + digit; |
58bb9ec3 |
618 | if (++s < send) |
619 | digit = *s - '0'; |
60939fb8 |
620 | else |
621 | break; |
622 | } |
623 | if (digit >= 0 && digit <= 9 |
51bd16da |
624 | && (s < send)) { |
60939fb8 |
625 | /* value overflowed. |
626 | skip the remaining digits, don't |
627 | worry about setting *valuep. */ |
628 | do { |
629 | s++; |
630 | } while (s < send && isDIGIT(*s)); |
631 | numtype |= |
632 | IS_NUMBER_GREATER_THAN_UV_MAX; |
633 | goto skip_value; |
634 | } |
635 | } |
636 | } |
98994639 |
637 | } |
60939fb8 |
638 | } |
639 | } |
640 | } |
641 | } |
642 | } |
643 | } |
644 | } |
645 | } |
646 | } |
647 | } |
648 | } |
98994639 |
649 | } |
60939fb8 |
650 | } |
98994639 |
651 | } |
60939fb8 |
652 | numtype |= IS_NUMBER_IN_UV; |
653 | if (valuep) |
654 | *valuep = value; |
655 | |
656 | skip_value: |
657 | if (GROK_NUMERIC_RADIX(&s, send)) { |
658 | numtype |= IS_NUMBER_NOT_INT; |
659 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
660 | s++; |
98994639 |
661 | } |
60939fb8 |
662 | } |
663 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
664 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
665 | /* no digits before the radix means we need digits after it */ |
666 | if (s < send && isDIGIT(*s)) { |
667 | do { |
668 | s++; |
669 | } while (s < send && isDIGIT(*s)); |
670 | if (valuep) { |
671 | /* integer approximation is valid - it's 0. */ |
672 | *valuep = 0; |
673 | } |
98994639 |
674 | } |
60939fb8 |
675 | else |
676 | return 0; |
677 | } else if (*s == 'I' || *s == 'i') { |
678 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
679 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
680 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
681 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
682 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
683 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
684 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
685 | s++; |
98994639 |
686 | } |
60939fb8 |
687 | sawinf = 1; |
aa8b85de |
688 | } else if (*s == 'N' || *s == 'n') { |
689 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
690 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
691 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
692 | s++; |
693 | sawnan = 1; |
694 | } else |
98994639 |
695 | return 0; |
60939fb8 |
696 | |
697 | if (sawinf) { |
698 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
699 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
700 | } else if (sawnan) { |
701 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
702 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
703 | } else if (s < send) { |
704 | /* we can have an optional exponent part */ |
705 | if (*s == 'e' || *s == 'E') { |
706 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
707 | numtype &= IS_NUMBER_NEG; |
708 | numtype |= IS_NUMBER_NOT_INT; |
709 | s++; |
710 | if (s < send && (*s == '-' || *s == '+')) |
711 | s++; |
712 | if (s < send && isDIGIT(*s)) { |
713 | do { |
714 | s++; |
715 | } while (s < send && isDIGIT(*s)); |
716 | } |
717 | else |
718 | return 0; |
719 | } |
720 | } |
721 | while (s < send && isSPACE(*s)) |
722 | s++; |
723 | if (s >= send) |
aa8b85de |
724 | return numtype; |
60939fb8 |
725 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
726 | if (valuep) |
727 | *valuep = 0; |
728 | return IS_NUMBER_IN_UV; |
729 | } |
730 | return 0; |
98994639 |
731 | } |
732 | |
4801ca72 |
733 | STATIC NV |
98994639 |
734 | S_mulexp10(NV value, I32 exponent) |
735 | { |
736 | NV result = 1.0; |
737 | NV power = 10.0; |
738 | bool negative = 0; |
739 | I32 bit; |
740 | |
741 | if (exponent == 0) |
742 | return value; |
20f6aaab |
743 | if (value == 0) |
66a1b24b |
744 | return (NV)0; |
87032ba1 |
745 | |
24866caa |
746 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
747 | * and that format does not have *easy* capabilities [1] for |
24866caa |
748 | * overflowing doubles 'silently' as IEEE fp does. We also need |
749 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
750 | * range is much larger than D_FLOAT it still doesn't do silent |
751 | * overflow. Therefore we need to detect early whether we would |
752 | * overflow (this is the behaviour of the native string-to-float |
753 | * conversion routines, and therefore of native applications, too). |
67597c89 |
754 | * |
24866caa |
755 | * [1] Trying to establish a condition handler to trap floating point |
756 | * exceptions is not a good idea. */ |
87032ba1 |
757 | |
758 | /* In UNICOS and in certain Cray models (such as T90) there is no |
759 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
760 | * There is something you can do if you are willing to use some |
761 | * inline assembler: the instruction is called DFI-- but that will |
762 | * disable *all* floating point interrupts, a little bit too large |
763 | * a hammer. Therefore we need to catch potential overflows before |
764 | * it's too late. */ |
353813d9 |
765 | |
766 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
767 | STMT_START { |
c4420975 |
768 | const NV exp_v = log10(value); |
353813d9 |
769 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
770 | return NV_MAX; |
771 | if (exponent < 0) { |
772 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
773 | return 0.0; |
774 | while (-exponent >= NV_MAX_10_EXP) { |
775 | /* combination does not overflow, but 10^(-exponent) does */ |
776 | value /= 10; |
777 | ++exponent; |
778 | } |
779 | } |
780 | } STMT_END; |
87032ba1 |
781 | #endif |
782 | |
353813d9 |
783 | if (exponent < 0) { |
784 | negative = 1; |
785 | exponent = -exponent; |
786 | } |
98994639 |
787 | for (bit = 1; exponent; bit <<= 1) { |
788 | if (exponent & bit) { |
789 | exponent ^= bit; |
790 | result *= power; |
236f0012 |
791 | /* Floating point exceptions are supposed to be turned off, |
792 | * but if we're obviously done, don't risk another iteration. |
793 | */ |
794 | if (exponent == 0) break; |
98994639 |
795 | } |
796 | power *= power; |
797 | } |
798 | return negative ? value / result : value * result; |
799 | } |
800 | |
801 | NV |
802 | Perl_my_atof(pTHX_ const char* s) |
803 | { |
804 | NV x = 0.0; |
805 | #ifdef USE_LOCALE_NUMERIC |
806 | if (PL_numeric_local && IN_LOCALE) { |
807 | NV y; |
808 | |
809 | /* Scan the number twice; once using locale and once without; |
810 | * choose the larger result (in absolute value). */ |
a36244b7 |
811 | Perl_atof2(s, x); |
98994639 |
812 | SET_NUMERIC_STANDARD(); |
a36244b7 |
813 | Perl_atof2(s, y); |
98994639 |
814 | SET_NUMERIC_LOCAL(); |
815 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
816 | return y; |
817 | } |
818 | else |
a36244b7 |
819 | Perl_atof2(s, x); |
98994639 |
820 | #else |
a36244b7 |
821 | Perl_atof2(s, x); |
98994639 |
822 | #endif |
823 | return x; |
824 | } |
825 | |
826 | char* |
827 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
828 | { |
20f6aaab |
829 | NV result[3] = {0.0, 0.0, 0.0}; |
e1ec3a88 |
830 | const char* s = orig; |
a36244b7 |
831 | #ifdef USE_PERL_ATOF |
20f6aaab |
832 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
833 | bool negative = 0; |
e1ec3a88 |
834 | const char* send = s + strlen(orig) - 1; |
8194bf88 |
835 | bool seen_digit = 0; |
20f6aaab |
836 | I32 exp_adjust[2] = {0,0}; |
837 | I32 exp_acc[2] = {-1, -1}; |
838 | /* the current exponent adjust for the accumulators */ |
98994639 |
839 | I32 exponent = 0; |
8194bf88 |
840 | I32 seen_dp = 0; |
20f6aaab |
841 | I32 digit = 0; |
842 | I32 old_digit = 0; |
8194bf88 |
843 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
844 | |
845 | /* There is no point in processing more significant digits |
846 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
847 | * while we need an upper-bound value. We add 2 to account for this; |
848 | * since it will have been conservative on both the first and last digit. |
849 | * For example a 32-bit mantissa with an exponent of 4 would have |
850 | * exact values in the set |
851 | * 4 |
852 | * 8 |
853 | * .. |
854 | * 17179869172 |
855 | * 17179869176 |
856 | * 17179869180 |
857 | * |
858 | * where for the purposes of calculating NV_DIG we would have to discount |
859 | * both the first and last digit, since neither can hold all values from |
860 | * 0..9; but for calculating the value we must examine those two digits. |
861 | */ |
862 | #define MAX_SIG_DIGITS (NV_DIG+2) |
863 | |
864 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
865 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
866 | |
96a05aee |
867 | /* leading whitespace */ |
868 | while (isSPACE(*s)) |
869 | ++s; |
870 | |
98994639 |
871 | /* sign */ |
872 | switch (*s) { |
873 | case '-': |
874 | negative = 1; |
875 | /* fall through */ |
876 | case '+': |
877 | ++s; |
878 | } |
879 | |
2b54f59f |
880 | /* punt to strtod for NaN/Inf; if no support for it there, tough luck */ |
881 | |
882 | #ifdef HAS_STRTOD |
883 | if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') { |
c042ae3a |
884 | const char *p = negative ? s - 1 : s; |
2b54f59f |
885 | char *endp; |
886 | NV rslt; |
887 | rslt = strtod(p, &endp); |
888 | if (endp != p) { |
889 | *value = rslt; |
890 | return (char *)endp; |
891 | } |
892 | } |
893 | #endif |
894 | |
8194bf88 |
895 | /* we accumulate digits into an integer; when this becomes too |
896 | * large, we add the total to NV and start again */ |
98994639 |
897 | |
8194bf88 |
898 | while (1) { |
899 | if (isDIGIT(*s)) { |
900 | seen_digit = 1; |
20f6aaab |
901 | old_digit = digit; |
8194bf88 |
902 | digit = *s++ - '0'; |
20f6aaab |
903 | if (seen_dp) |
904 | exp_adjust[1]++; |
98994639 |
905 | |
8194bf88 |
906 | /* don't start counting until we see the first significant |
907 | * digit, eg the 5 in 0.00005... */ |
908 | if (!sig_digits && digit == 0) |
909 | continue; |
910 | |
911 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
912 | /* limits of precision reached */ |
20f6aaab |
913 | if (digit > 5) { |
914 | ++accumulator[seen_dp]; |
915 | } else if (digit == 5) { |
916 | if (old_digit % 2) { /* round to even - Allen */ |
917 | ++accumulator[seen_dp]; |
918 | } |
919 | } |
920 | if (seen_dp) { |
921 | exp_adjust[1]--; |
922 | } else { |
923 | exp_adjust[0]++; |
924 | } |
8194bf88 |
925 | /* skip remaining digits */ |
98994639 |
926 | while (isDIGIT(*s)) { |
98994639 |
927 | ++s; |
20f6aaab |
928 | if (! seen_dp) { |
929 | exp_adjust[0]++; |
930 | } |
98994639 |
931 | } |
932 | /* warn of loss of precision? */ |
98994639 |
933 | } |
8194bf88 |
934 | else { |
20f6aaab |
935 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
936 | /* add accumulator to result and start again */ |
20f6aaab |
937 | result[seen_dp] = S_mulexp10(result[seen_dp], |
938 | exp_acc[seen_dp]) |
939 | + (NV)accumulator[seen_dp]; |
940 | accumulator[seen_dp] = 0; |
941 | exp_acc[seen_dp] = 0; |
98994639 |
942 | } |
20f6aaab |
943 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
944 | ++exp_acc[seen_dp]; |
98994639 |
945 | } |
8194bf88 |
946 | } |
e1ec3a88 |
947 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) { |
8194bf88 |
948 | seen_dp = 1; |
20f6aaab |
949 | if (sig_digits > MAX_SIG_DIGITS) { |
950 | ++s; |
951 | while (isDIGIT(*s)) { |
952 | ++s; |
953 | } |
954 | break; |
955 | } |
8194bf88 |
956 | } |
957 | else { |
958 | break; |
98994639 |
959 | } |
960 | } |
961 | |
20f6aaab |
962 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
963 | if (seen_dp) { |
964 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
965 | } |
98994639 |
966 | |
8194bf88 |
967 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
968 | bool expnegative = 0; |
969 | |
970 | ++s; |
971 | switch (*s) { |
972 | case '-': |
973 | expnegative = 1; |
974 | /* fall through */ |
975 | case '+': |
976 | ++s; |
977 | } |
978 | while (isDIGIT(*s)) |
979 | exponent = exponent * 10 + (*s++ - '0'); |
980 | if (expnegative) |
981 | exponent = -exponent; |
982 | } |
983 | |
20f6aaab |
984 | |
985 | |
98994639 |
986 | /* now apply the exponent */ |
20f6aaab |
987 | |
988 | if (seen_dp) { |
989 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
990 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
991 | } else { |
992 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
993 | } |
98994639 |
994 | |
995 | /* now apply the sign */ |
996 | if (negative) |
20f6aaab |
997 | result[2] = -result[2]; |
a36244b7 |
998 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
999 | *value = result[2]; |
73d840c0 |
1000 | return (char *)s; |
98994639 |
1001 | } |
1002 | |
55954f19 |
1003 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) |
1004 | long double |
1005 | Perl_my_modfl(long double x, long double *ip) |
1006 | { |
1007 | *ip = aintl(x); |
1008 | return (x == *ip ? copysignl(0.0L, x) : x - *ip); |
1009 | } |
1010 | #endif |
1011 | |
1012 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) |
1013 | long double |
1014 | Perl_my_frexpl(long double x, int *e) { |
1015 | *e = x == 0.0L ? 0 : ilogbl(x) + 1; |
1016 | return (scalbnl(x, -*e)); |
1017 | } |
1018 | #endif |
66610fdd |
1019 | |
1020 | /* |
1021 | * Local variables: |
1022 | * c-indentation-style: bsd |
1023 | * c-basic-offset: 4 |
1024 | * indent-tabs-mode: t |
1025 | * End: |
1026 | * |
37442d52 |
1027 | * ex: set ts=8 sts=4 sw=4 noet: |
1028 | */ |