Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
4bb101f2 |
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
4 | * 2000, 2001, 2002, 2003, by Larry Wall and others |
98994639 |
5 | * |
6 | * You may distribute under the terms of either the GNU General Public |
7 | * License or the Artistic License, as specified in the README file. |
8 | * |
9 | */ |
10 | |
11 | /* |
12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
13 | * wizards count differently to other people." |
14 | */ |
15 | |
ccfc67b7 |
16 | /* |
17 | =head1 Numeric functions |
18 | */ |
19 | |
98994639 |
20 | #include "EXTERN.h" |
21 | #define PERL_IN_NUMERIC_C |
22 | #include "perl.h" |
23 | |
24 | U32 |
25 | Perl_cast_ulong(pTHX_ NV f) |
26 | { |
27 | if (f < 0.0) |
28 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
29 | if (f < U32_MAX_P1) { |
30 | #if CASTFLAGS & 2 |
31 | if (f < U32_MAX_P1_HALF) |
32 | return (U32) f; |
33 | f -= U32_MAX_P1_HALF; |
34 | return ((U32) f) | (1 + U32_MAX >> 1); |
35 | #else |
36 | return (U32) f; |
37 | #endif |
38 | } |
39 | return f > 0 ? U32_MAX : 0 /* NaN */; |
40 | } |
41 | |
42 | I32 |
43 | Perl_cast_i32(pTHX_ NV f) |
44 | { |
45 | if (f < I32_MAX_P1) |
46 | return f < I32_MIN ? I32_MIN : (I32) f; |
47 | if (f < U32_MAX_P1) { |
48 | #if CASTFLAGS & 2 |
49 | if (f < U32_MAX_P1_HALF) |
50 | return (I32)(U32) f; |
51 | f -= U32_MAX_P1_HALF; |
52 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
53 | #else |
54 | return (I32)(U32) f; |
55 | #endif |
56 | } |
57 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
58 | } |
59 | |
60 | IV |
61 | Perl_cast_iv(pTHX_ NV f) |
62 | { |
63 | if (f < IV_MAX_P1) |
64 | return f < IV_MIN ? IV_MIN : (IV) f; |
65 | if (f < UV_MAX_P1) { |
66 | #if CASTFLAGS & 2 |
67 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
68 | if (f < UV_MAX_P1_HALF) |
69 | return (IV)(UV) f; |
70 | f -= UV_MAX_P1_HALF; |
71 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
72 | #else |
73 | return (IV)(UV) f; |
74 | #endif |
75 | } |
76 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
77 | } |
78 | |
79 | UV |
80 | Perl_cast_uv(pTHX_ NV f) |
81 | { |
82 | if (f < 0.0) |
83 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
84 | if (f < UV_MAX_P1) { |
85 | #if CASTFLAGS & 2 |
86 | if (f < UV_MAX_P1_HALF) |
87 | return (UV) f; |
88 | f -= UV_MAX_P1_HALF; |
89 | return ((UV) f) | (1 + UV_MAX >> 1); |
90 | #else |
91 | return (UV) f; |
92 | #endif |
93 | } |
94 | return f > 0 ? UV_MAX : 0 /* NaN */; |
95 | } |
96 | |
97 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) |
98 | /* |
99 | * This hack is to force load of "huge" support from libm.a |
100 | * So it is in perl for (say) POSIX to use. |
101 | * Needed for SunOS with Sun's 'acc' for example. |
102 | */ |
103 | NV |
104 | Perl_huge(void) |
105 | { |
106 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) |
107 | return HUGE_VALL; |
108 | # endif |
109 | return HUGE_VAL; |
110 | } |
111 | #endif |
112 | |
53305cf1 |
113 | /* |
114 | =for apidoc grok_bin |
98994639 |
115 | |
53305cf1 |
116 | converts a string representing a binary number to numeric form. |
117 | |
118 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
119 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
120 | The scan stops at the end of the string, or the first invalid character. |
121 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
122 | output flags. |
123 | |
124 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
125 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
126 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
127 | and writes the value to I<*result> (or the value is discarded if I<result> |
128 | is NULL). |
129 | |
d1be9408 |
130 | The hex number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
131 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
132 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
133 | number may use '_' characters to separate digits. |
134 | |
135 | =cut |
136 | */ |
137 | |
138 | UV |
139 | Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
140 | const char *s = start; |
141 | STRLEN len = *len_p; |
142 | UV value = 0; |
143 | NV value_nv = 0; |
144 | |
145 | const UV max_div_2 = UV_MAX / 2; |
146 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
147 | bool overflowed = FALSE; |
148 | |
a4c04bdc |
149 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
150 | /* strip off leading b or 0b. |
151 | for compatibility silently suffer "b" and "0b" as valid binary |
152 | numbers. */ |
153 | if (len >= 1) { |
154 | if (s[0] == 'b') { |
155 | s++; |
156 | len--; |
157 | } |
158 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
159 | s+=2; |
160 | len-=2; |
161 | } |
162 | } |
53305cf1 |
163 | } |
164 | |
165 | for (; len-- && *s; s++) { |
166 | char bit = *s; |
167 | if (bit == '0' || bit == '1') { |
168 | /* Write it in this wonky order with a goto to attempt to get the |
169 | compiler to make the common case integer-only loop pretty tight. |
170 | With gcc seems to be much straighter code than old scan_bin. */ |
171 | redo: |
172 | if (!overflowed) { |
173 | if (value <= max_div_2) { |
174 | value = (value << 1) | (bit - '0'); |
175 | continue; |
176 | } |
177 | /* Bah. We're just overflowed. */ |
178 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
179 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
180 | "Integer overflow in binary number"); |
181 | overflowed = TRUE; |
182 | value_nv = (NV) value; |
183 | } |
184 | value_nv *= 2.0; |
98994639 |
185 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
186 | * represent a UV this summing of small low-order numbers |
98994639 |
187 | * is a waste of time (because the NV cannot preserve |
188 | * the low-order bits anyway): we could just remember when |
53305cf1 |
189 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
190 | * right amount. */ |
53305cf1 |
191 | value_nv += (NV)(bit - '0'); |
192 | continue; |
193 | } |
194 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
195 | && (bit == '0' || bit == '1')) |
98994639 |
196 | { |
197 | --len; |
198 | ++s; |
53305cf1 |
199 | goto redo; |
98994639 |
200 | } |
94dd8549 |
201 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
202 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
203 | "Illegal binary digit '%c' ignored", *s); |
204 | break; |
98994639 |
205 | } |
53305cf1 |
206 | |
207 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
208 | #if UVSIZE > 4 |
53305cf1 |
209 | || (!overflowed && value > 0xffffffff ) |
98994639 |
210 | #endif |
211 | ) { |
212 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
213 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
214 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
215 | } |
216 | *len_p = s - start; |
217 | if (!overflowed) { |
218 | *flags = 0; |
219 | return value; |
98994639 |
220 | } |
53305cf1 |
221 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
222 | if (result) |
223 | *result = value_nv; |
224 | return UV_MAX; |
98994639 |
225 | } |
226 | |
53305cf1 |
227 | /* |
228 | =for apidoc grok_hex |
229 | |
230 | converts a string representing a hex number to numeric form. |
231 | |
232 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
233 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
234 | The scan stops at the end of the string, or the first non-hex-digit character. |
235 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
236 | output flags. |
237 | |
238 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
239 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
240 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
241 | and writes the value to I<*result> (or the value is discarded if I<result> |
242 | is NULL). |
243 | |
d1be9408 |
244 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
245 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
246 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
247 | number may use '_' characters to separate digits. |
248 | |
249 | =cut |
250 | */ |
251 | |
252 | UV |
253 | Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
254 | const char *s = start; |
255 | STRLEN len = *len_p; |
256 | UV value = 0; |
257 | NV value_nv = 0; |
258 | |
259 | const UV max_div_16 = UV_MAX / 16; |
260 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
261 | bool overflowed = FALSE; |
262 | const char *hexdigit; |
98994639 |
263 | |
a4c04bdc |
264 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
265 | /* strip off leading x or 0x. |
266 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
267 | */ |
268 | if (len >= 1) { |
269 | if (s[0] == 'x') { |
270 | s++; |
271 | len--; |
272 | } |
273 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
274 | s+=2; |
275 | len-=2; |
276 | } |
277 | } |
98994639 |
278 | } |
279 | |
280 | for (; len-- && *s; s++) { |
281 | hexdigit = strchr((char *) PL_hexdigit, *s); |
53305cf1 |
282 | if (hexdigit) { |
283 | /* Write it in this wonky order with a goto to attempt to get the |
284 | compiler to make the common case integer-only loop pretty tight. |
285 | With gcc seems to be much straighter code than old scan_hex. */ |
286 | redo: |
287 | if (!overflowed) { |
288 | if (value <= max_div_16) { |
289 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
290 | continue; |
291 | } |
292 | /* Bah. We're just overflowed. */ |
293 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
294 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
295 | "Integer overflow in hexadecimal number"); |
296 | overflowed = TRUE; |
297 | value_nv = (NV) value; |
298 | } |
299 | value_nv *= 16.0; |
300 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
301 | * represent a UV this summing of small low-order numbers |
53305cf1 |
302 | * is a waste of time (because the NV cannot preserve |
303 | * the low-order bits anyway): we could just remember when |
304 | * did we overflow and in the end just multiply value_nv by the |
305 | * right amount of 16-tuples. */ |
306 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
307 | continue; |
308 | } |
309 | if (*s == '_' && len && allow_underscores && s[1] |
98994639 |
310 | && (hexdigit = strchr((char *) PL_hexdigit, s[1]))) |
311 | { |
312 | --len; |
313 | ++s; |
53305cf1 |
314 | goto redo; |
98994639 |
315 | } |
94dd8549 |
316 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
317 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
318 | "Illegal hexadecimal digit '%c' ignored", *s); |
319 | break; |
320 | } |
321 | |
322 | if ( ( overflowed && value_nv > 4294967295.0) |
323 | #if UVSIZE > 4 |
324 | || (!overflowed && value > 0xffffffff ) |
325 | #endif |
326 | ) { |
327 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
328 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
329 | "Hexadecimal number > 0xffffffff non-portable"); |
330 | } |
331 | *len_p = s - start; |
332 | if (!overflowed) { |
333 | *flags = 0; |
334 | return value; |
335 | } |
336 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
337 | if (result) |
338 | *result = value_nv; |
339 | return UV_MAX; |
340 | } |
341 | |
342 | /* |
343 | =for apidoc grok_oct |
344 | |
345 | |
346 | =cut |
347 | */ |
348 | |
349 | UV |
350 | Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
351 | const char *s = start; |
352 | STRLEN len = *len_p; |
353 | UV value = 0; |
354 | NV value_nv = 0; |
355 | |
356 | const UV max_div_8 = UV_MAX / 8; |
357 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
358 | bool overflowed = FALSE; |
359 | |
360 | for (; len-- && *s; s++) { |
361 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
362 | out front allows slicker code. */ |
363 | int digit = *s - '0'; |
364 | if (digit >= 0 && digit <= 7) { |
365 | /* Write it in this wonky order with a goto to attempt to get the |
366 | compiler to make the common case integer-only loop pretty tight. |
367 | */ |
368 | redo: |
369 | if (!overflowed) { |
370 | if (value <= max_div_8) { |
371 | value = (value << 3) | digit; |
372 | continue; |
373 | } |
374 | /* Bah. We're just overflowed. */ |
375 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
376 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
377 | "Integer overflow in octal number"); |
378 | overflowed = TRUE; |
379 | value_nv = (NV) value; |
380 | } |
381 | value_nv *= 8.0; |
98994639 |
382 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
383 | * represent a UV this summing of small low-order numbers |
98994639 |
384 | * is a waste of time (because the NV cannot preserve |
385 | * the low-order bits anyway): we could just remember when |
53305cf1 |
386 | * did we overflow and in the end just multiply value_nv by the |
387 | * right amount of 8-tuples. */ |
388 | value_nv += (NV)digit; |
389 | continue; |
390 | } |
391 | if (digit == ('_' - '0') && len && allow_underscores |
392 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
393 | { |
394 | --len; |
395 | ++s; |
396 | goto redo; |
397 | } |
398 | /* Allow \octal to work the DWIM way (that is, stop scanning |
399 | * as soon as non-octal characters are seen, complain only iff |
400 | * someone seems to want to use the digits eight and nine). */ |
401 | if (digit == 8 || digit == 9) { |
94dd8549 |
402 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
403 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
404 | "Illegal octal digit '%c' ignored", *s); |
405 | } |
406 | break; |
98994639 |
407 | } |
53305cf1 |
408 | |
409 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
410 | #if UVSIZE > 4 |
53305cf1 |
411 | || (!overflowed && value > 0xffffffff ) |
98994639 |
412 | #endif |
413 | ) { |
414 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
415 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
416 | "Octal number > 037777777777 non-portable"); |
417 | } |
418 | *len_p = s - start; |
419 | if (!overflowed) { |
420 | *flags = 0; |
421 | return value; |
98994639 |
422 | } |
53305cf1 |
423 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
424 | if (result) |
425 | *result = value_nv; |
426 | return UV_MAX; |
427 | } |
428 | |
429 | /* |
430 | =for apidoc scan_bin |
431 | |
432 | For backwards compatibility. Use C<grok_bin> instead. |
433 | |
434 | =for apidoc scan_hex |
435 | |
436 | For backwards compatibility. Use C<grok_hex> instead. |
437 | |
438 | =for apidoc scan_oct |
439 | |
440 | For backwards compatibility. Use C<grok_oct> instead. |
441 | |
442 | =cut |
443 | */ |
444 | |
445 | NV |
446 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
447 | { |
448 | NV rnv; |
449 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
450 | UV ruv = grok_bin (start, &len, &flags, &rnv); |
451 | |
452 | *retlen = len; |
453 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
454 | } |
455 | |
456 | NV |
457 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
458 | { |
459 | NV rnv; |
460 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
461 | UV ruv = grok_oct (start, &len, &flags, &rnv); |
462 | |
463 | *retlen = len; |
464 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
465 | } |
466 | |
467 | NV |
468 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
469 | { |
470 | NV rnv; |
471 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
472 | UV ruv = grok_hex (start, &len, &flags, &rnv); |
473 | |
474 | *retlen = len; |
475 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
476 | } |
477 | |
478 | /* |
479 | =for apidoc grok_numeric_radix |
480 | |
481 | Scan and skip for a numeric decimal separator (radix). |
482 | |
483 | =cut |
484 | */ |
485 | bool |
486 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
487 | { |
488 | #ifdef USE_LOCALE_NUMERIC |
489 | if (PL_numeric_radix_sv && IN_LOCALE) { |
490 | STRLEN len; |
491 | char* radix = SvPV(PL_numeric_radix_sv, len); |
492 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
493 | *sp += len; |
494 | return TRUE; |
495 | } |
496 | } |
497 | /* always try "." if numeric radix didn't match because |
498 | * we may have data from different locales mixed */ |
499 | #endif |
500 | if (*sp < send && **sp == '.') { |
501 | ++*sp; |
502 | return TRUE; |
503 | } |
504 | return FALSE; |
505 | } |
506 | |
507 | /* |
508 | =for apidoc grok_number |
509 | |
510 | Recognise (or not) a number. The type of the number is returned |
511 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
512 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
513 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
514 | |
515 | If the value of the number can fit an in UV, it is returned in the *valuep |
516 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
517 | will never be set unless *valuep is valid, but *valuep may have been assigned |
518 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
519 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
520 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
521 | |
522 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
523 | seen (in which case *valuep gives the true value truncated to an integer), and |
524 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
525 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
526 | number is larger than a UV. |
98994639 |
527 | |
528 | =cut |
529 | */ |
530 | int |
531 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
532 | { |
60939fb8 |
533 | const char *s = pv; |
534 | const char *send = pv + len; |
535 | const UV max_div_10 = UV_MAX / 10; |
536 | const char max_mod_10 = UV_MAX % 10; |
537 | int numtype = 0; |
538 | int sawinf = 0; |
aa8b85de |
539 | int sawnan = 0; |
60939fb8 |
540 | |
541 | while (s < send && isSPACE(*s)) |
542 | s++; |
543 | if (s == send) { |
544 | return 0; |
545 | } else if (*s == '-') { |
546 | s++; |
547 | numtype = IS_NUMBER_NEG; |
548 | } |
549 | else if (*s == '+') |
550 | s++; |
551 | |
552 | if (s == send) |
553 | return 0; |
554 | |
555 | /* next must be digit or the radix separator or beginning of infinity */ |
556 | if (isDIGIT(*s)) { |
557 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
558 | overflow. */ |
559 | UV value = *s - '0'; |
560 | /* This construction seems to be more optimiser friendly. |
561 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
562 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
563 | In theory the optimiser could deduce how far to unroll the loop |
564 | before checking for overflow. */ |
58bb9ec3 |
565 | if (++s < send) { |
566 | int digit = *s - '0'; |
60939fb8 |
567 | if (digit >= 0 && digit <= 9) { |
568 | value = value * 10 + digit; |
58bb9ec3 |
569 | if (++s < send) { |
570 | digit = *s - '0'; |
60939fb8 |
571 | if (digit >= 0 && digit <= 9) { |
572 | value = value * 10 + digit; |
58bb9ec3 |
573 | if (++s < send) { |
574 | digit = *s - '0'; |
60939fb8 |
575 | if (digit >= 0 && digit <= 9) { |
576 | value = value * 10 + digit; |
58bb9ec3 |
577 | if (++s < send) { |
578 | digit = *s - '0'; |
60939fb8 |
579 | if (digit >= 0 && digit <= 9) { |
580 | value = value * 10 + digit; |
58bb9ec3 |
581 | if (++s < send) { |
582 | digit = *s - '0'; |
60939fb8 |
583 | if (digit >= 0 && digit <= 9) { |
584 | value = value * 10 + digit; |
58bb9ec3 |
585 | if (++s < send) { |
586 | digit = *s - '0'; |
60939fb8 |
587 | if (digit >= 0 && digit <= 9) { |
588 | value = value * 10 + digit; |
58bb9ec3 |
589 | if (++s < send) { |
590 | digit = *s - '0'; |
60939fb8 |
591 | if (digit >= 0 && digit <= 9) { |
592 | value = value * 10 + digit; |
58bb9ec3 |
593 | if (++s < send) { |
594 | digit = *s - '0'; |
60939fb8 |
595 | if (digit >= 0 && digit <= 9) { |
596 | value = value * 10 + digit; |
58bb9ec3 |
597 | if (++s < send) { |
60939fb8 |
598 | /* Now got 9 digits, so need to check |
599 | each time for overflow. */ |
58bb9ec3 |
600 | digit = *s - '0'; |
60939fb8 |
601 | while (digit >= 0 && digit <= 9 |
602 | && (value < max_div_10 |
603 | || (value == max_div_10 |
604 | && digit <= max_mod_10))) { |
605 | value = value * 10 + digit; |
58bb9ec3 |
606 | if (++s < send) |
607 | digit = *s - '0'; |
60939fb8 |
608 | else |
609 | break; |
610 | } |
611 | if (digit >= 0 && digit <= 9 |
51bd16da |
612 | && (s < send)) { |
60939fb8 |
613 | /* value overflowed. |
614 | skip the remaining digits, don't |
615 | worry about setting *valuep. */ |
616 | do { |
617 | s++; |
618 | } while (s < send && isDIGIT(*s)); |
619 | numtype |= |
620 | IS_NUMBER_GREATER_THAN_UV_MAX; |
621 | goto skip_value; |
622 | } |
623 | } |
624 | } |
98994639 |
625 | } |
60939fb8 |
626 | } |
627 | } |
628 | } |
629 | } |
630 | } |
631 | } |
632 | } |
633 | } |
634 | } |
635 | } |
636 | } |
98994639 |
637 | } |
60939fb8 |
638 | } |
98994639 |
639 | } |
60939fb8 |
640 | numtype |= IS_NUMBER_IN_UV; |
641 | if (valuep) |
642 | *valuep = value; |
643 | |
644 | skip_value: |
645 | if (GROK_NUMERIC_RADIX(&s, send)) { |
646 | numtype |= IS_NUMBER_NOT_INT; |
647 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
648 | s++; |
98994639 |
649 | } |
60939fb8 |
650 | } |
651 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
652 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
653 | /* no digits before the radix means we need digits after it */ |
654 | if (s < send && isDIGIT(*s)) { |
655 | do { |
656 | s++; |
657 | } while (s < send && isDIGIT(*s)); |
658 | if (valuep) { |
659 | /* integer approximation is valid - it's 0. */ |
660 | *valuep = 0; |
661 | } |
98994639 |
662 | } |
60939fb8 |
663 | else |
664 | return 0; |
665 | } else if (*s == 'I' || *s == 'i') { |
666 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
667 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
668 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
669 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
670 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
671 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
672 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
673 | s++; |
98994639 |
674 | } |
60939fb8 |
675 | sawinf = 1; |
aa8b85de |
676 | } else if (*s == 'N' || *s == 'n') { |
677 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
678 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
679 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
680 | s++; |
681 | sawnan = 1; |
682 | } else |
98994639 |
683 | return 0; |
60939fb8 |
684 | |
685 | if (sawinf) { |
686 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
687 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
688 | } else if (sawnan) { |
689 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
690 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
691 | } else if (s < send) { |
692 | /* we can have an optional exponent part */ |
693 | if (*s == 'e' || *s == 'E') { |
694 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
695 | numtype &= IS_NUMBER_NEG; |
696 | numtype |= IS_NUMBER_NOT_INT; |
697 | s++; |
698 | if (s < send && (*s == '-' || *s == '+')) |
699 | s++; |
700 | if (s < send && isDIGIT(*s)) { |
701 | do { |
702 | s++; |
703 | } while (s < send && isDIGIT(*s)); |
704 | } |
705 | else |
706 | return 0; |
707 | } |
708 | } |
709 | while (s < send && isSPACE(*s)) |
710 | s++; |
711 | if (s >= send) |
aa8b85de |
712 | return numtype; |
60939fb8 |
713 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
714 | if (valuep) |
715 | *valuep = 0; |
716 | return IS_NUMBER_IN_UV; |
717 | } |
718 | return 0; |
98994639 |
719 | } |
720 | |
4801ca72 |
721 | STATIC NV |
98994639 |
722 | S_mulexp10(NV value, I32 exponent) |
723 | { |
724 | NV result = 1.0; |
725 | NV power = 10.0; |
726 | bool negative = 0; |
727 | I32 bit; |
728 | |
729 | if (exponent == 0) |
730 | return value; |
20f6aaab |
731 | if (value == 0) |
732 | return 0; |
87032ba1 |
733 | |
24866caa |
734 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
735 | * and that format does not have *easy* capabilities [1] for |
24866caa |
736 | * overflowing doubles 'silently' as IEEE fp does. We also need |
737 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
738 | * range is much larger than D_FLOAT it still doesn't do silent |
739 | * overflow. Therefore we need to detect early whether we would |
740 | * overflow (this is the behaviour of the native string-to-float |
741 | * conversion routines, and therefore of native applications, too). |
67597c89 |
742 | * |
24866caa |
743 | * [1] Trying to establish a condition handler to trap floating point |
744 | * exceptions is not a good idea. */ |
87032ba1 |
745 | |
746 | /* In UNICOS and in certain Cray models (such as T90) there is no |
747 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
748 | * There is something you can do if you are willing to use some |
749 | * inline assembler: the instruction is called DFI-- but that will |
750 | * disable *all* floating point interrupts, a little bit too large |
751 | * a hammer. Therefore we need to catch potential overflows before |
752 | * it's too late. */ |
353813d9 |
753 | |
754 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
755 | STMT_START { |
756 | NV exp_v = log10(value); |
757 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
758 | return NV_MAX; |
759 | if (exponent < 0) { |
760 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
761 | return 0.0; |
762 | while (-exponent >= NV_MAX_10_EXP) { |
763 | /* combination does not overflow, but 10^(-exponent) does */ |
764 | value /= 10; |
765 | ++exponent; |
766 | } |
767 | } |
768 | } STMT_END; |
87032ba1 |
769 | #endif |
770 | |
353813d9 |
771 | if (exponent < 0) { |
772 | negative = 1; |
773 | exponent = -exponent; |
774 | } |
98994639 |
775 | for (bit = 1; exponent; bit <<= 1) { |
776 | if (exponent & bit) { |
777 | exponent ^= bit; |
778 | result *= power; |
236f0012 |
779 | /* Floating point exceptions are supposed to be turned off, |
780 | * but if we're obviously done, don't risk another iteration. |
781 | */ |
782 | if (exponent == 0) break; |
98994639 |
783 | } |
784 | power *= power; |
785 | } |
786 | return negative ? value / result : value * result; |
787 | } |
788 | |
789 | NV |
790 | Perl_my_atof(pTHX_ const char* s) |
791 | { |
792 | NV x = 0.0; |
793 | #ifdef USE_LOCALE_NUMERIC |
794 | if (PL_numeric_local && IN_LOCALE) { |
795 | NV y; |
796 | |
797 | /* Scan the number twice; once using locale and once without; |
798 | * choose the larger result (in absolute value). */ |
a36244b7 |
799 | Perl_atof2(s, x); |
98994639 |
800 | SET_NUMERIC_STANDARD(); |
a36244b7 |
801 | Perl_atof2(s, y); |
98994639 |
802 | SET_NUMERIC_LOCAL(); |
803 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
804 | return y; |
805 | } |
806 | else |
a36244b7 |
807 | Perl_atof2(s, x); |
98994639 |
808 | #else |
a36244b7 |
809 | Perl_atof2(s, x); |
98994639 |
810 | #endif |
811 | return x; |
812 | } |
813 | |
814 | char* |
815 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
816 | { |
20f6aaab |
817 | NV result[3] = {0.0, 0.0, 0.0}; |
98994639 |
818 | char* s = (char*)orig; |
a36244b7 |
819 | #ifdef USE_PERL_ATOF |
20f6aaab |
820 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
821 | bool negative = 0; |
98994639 |
822 | char* send = s + strlen(orig) - 1; |
8194bf88 |
823 | bool seen_digit = 0; |
20f6aaab |
824 | I32 exp_adjust[2] = {0,0}; |
825 | I32 exp_acc[2] = {-1, -1}; |
826 | /* the current exponent adjust for the accumulators */ |
98994639 |
827 | I32 exponent = 0; |
8194bf88 |
828 | I32 seen_dp = 0; |
20f6aaab |
829 | I32 digit = 0; |
830 | I32 old_digit = 0; |
8194bf88 |
831 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
832 | |
833 | /* There is no point in processing more significant digits |
834 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
835 | * while we need an upper-bound value. We add 2 to account for this; |
836 | * since it will have been conservative on both the first and last digit. |
837 | * For example a 32-bit mantissa with an exponent of 4 would have |
838 | * exact values in the set |
839 | * 4 |
840 | * 8 |
841 | * .. |
842 | * 17179869172 |
843 | * 17179869176 |
844 | * 17179869180 |
845 | * |
846 | * where for the purposes of calculating NV_DIG we would have to discount |
847 | * both the first and last digit, since neither can hold all values from |
848 | * 0..9; but for calculating the value we must examine those two digits. |
849 | */ |
850 | #define MAX_SIG_DIGITS (NV_DIG+2) |
851 | |
852 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
853 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
854 | |
96a05aee |
855 | /* leading whitespace */ |
856 | while (isSPACE(*s)) |
857 | ++s; |
858 | |
98994639 |
859 | /* sign */ |
860 | switch (*s) { |
861 | case '-': |
862 | negative = 1; |
863 | /* fall through */ |
864 | case '+': |
865 | ++s; |
866 | } |
867 | |
8194bf88 |
868 | /* we accumulate digits into an integer; when this becomes too |
869 | * large, we add the total to NV and start again */ |
98994639 |
870 | |
8194bf88 |
871 | while (1) { |
872 | if (isDIGIT(*s)) { |
873 | seen_digit = 1; |
20f6aaab |
874 | old_digit = digit; |
8194bf88 |
875 | digit = *s++ - '0'; |
20f6aaab |
876 | if (seen_dp) |
877 | exp_adjust[1]++; |
98994639 |
878 | |
8194bf88 |
879 | /* don't start counting until we see the first significant |
880 | * digit, eg the 5 in 0.00005... */ |
881 | if (!sig_digits && digit == 0) |
882 | continue; |
883 | |
884 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
885 | /* limits of precision reached */ |
20f6aaab |
886 | if (digit > 5) { |
887 | ++accumulator[seen_dp]; |
888 | } else if (digit == 5) { |
889 | if (old_digit % 2) { /* round to even - Allen */ |
890 | ++accumulator[seen_dp]; |
891 | } |
892 | } |
893 | if (seen_dp) { |
894 | exp_adjust[1]--; |
895 | } else { |
896 | exp_adjust[0]++; |
897 | } |
8194bf88 |
898 | /* skip remaining digits */ |
98994639 |
899 | while (isDIGIT(*s)) { |
98994639 |
900 | ++s; |
20f6aaab |
901 | if (! seen_dp) { |
902 | exp_adjust[0]++; |
903 | } |
98994639 |
904 | } |
905 | /* warn of loss of precision? */ |
98994639 |
906 | } |
8194bf88 |
907 | else { |
20f6aaab |
908 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
909 | /* add accumulator to result and start again */ |
20f6aaab |
910 | result[seen_dp] = S_mulexp10(result[seen_dp], |
911 | exp_acc[seen_dp]) |
912 | + (NV)accumulator[seen_dp]; |
913 | accumulator[seen_dp] = 0; |
914 | exp_acc[seen_dp] = 0; |
98994639 |
915 | } |
20f6aaab |
916 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
917 | ++exp_acc[seen_dp]; |
98994639 |
918 | } |
8194bf88 |
919 | } |
920 | else if (!seen_dp && GROK_NUMERIC_RADIX((const char **)&s, send)) { |
921 | seen_dp = 1; |
20f6aaab |
922 | if (sig_digits > MAX_SIG_DIGITS) { |
923 | ++s; |
924 | while (isDIGIT(*s)) { |
925 | ++s; |
926 | } |
927 | break; |
928 | } |
8194bf88 |
929 | } |
930 | else { |
931 | break; |
98994639 |
932 | } |
933 | } |
934 | |
20f6aaab |
935 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
936 | if (seen_dp) { |
937 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
938 | } |
98994639 |
939 | |
8194bf88 |
940 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
941 | bool expnegative = 0; |
942 | |
943 | ++s; |
944 | switch (*s) { |
945 | case '-': |
946 | expnegative = 1; |
947 | /* fall through */ |
948 | case '+': |
949 | ++s; |
950 | } |
951 | while (isDIGIT(*s)) |
952 | exponent = exponent * 10 + (*s++ - '0'); |
953 | if (expnegative) |
954 | exponent = -exponent; |
955 | } |
956 | |
20f6aaab |
957 | |
958 | |
98994639 |
959 | /* now apply the exponent */ |
20f6aaab |
960 | |
961 | if (seen_dp) { |
962 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
963 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
964 | } else { |
965 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
966 | } |
98994639 |
967 | |
968 | /* now apply the sign */ |
969 | if (negative) |
20f6aaab |
970 | result[2] = -result[2]; |
a36244b7 |
971 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
972 | *value = result[2]; |
98994639 |
973 | return s; |
974 | } |
975 | |
55954f19 |
976 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) |
977 | long double |
978 | Perl_my_modfl(long double x, long double *ip) |
979 | { |
980 | *ip = aintl(x); |
981 | return (x == *ip ? copysignl(0.0L, x) : x - *ip); |
982 | } |
983 | #endif |
984 | |
985 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) |
986 | long double |
987 | Perl_my_frexpl(long double x, int *e) { |
988 | *e = x == 0.0L ? 0 : ilogbl(x) + 1; |
989 | return (scalbnl(x, -*e)); |
990 | } |
991 | #endif |