Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
4bb101f2 |
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
1d325971 |
4 | * 2000, 2001, 2002, 2003, 2005 by Larry Wall and others |
98994639 |
5 | * |
6 | * You may distribute under the terms of either the GNU General Public |
7 | * License or the Artistic License, as specified in the README file. |
8 | * |
9 | */ |
10 | |
11 | /* |
12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
13 | * wizards count differently to other people." |
14 | */ |
15 | |
ccfc67b7 |
16 | /* |
17 | =head1 Numeric functions |
166f8a29 |
18 | |
19 | This file contains all the stuff needed by perl for manipulating numeric |
20 | values, including such things as replacements for the OS's atof() function |
21 | |
22 | =cut |
23 | |
ccfc67b7 |
24 | */ |
25 | |
98994639 |
26 | #include "EXTERN.h" |
27 | #define PERL_IN_NUMERIC_C |
28 | #include "perl.h" |
29 | |
30 | U32 |
31 | Perl_cast_ulong(pTHX_ NV f) |
32 | { |
33 | if (f < 0.0) |
34 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
35 | if (f < U32_MAX_P1) { |
36 | #if CASTFLAGS & 2 |
37 | if (f < U32_MAX_P1_HALF) |
38 | return (U32) f; |
39 | f -= U32_MAX_P1_HALF; |
40 | return ((U32) f) | (1 + U32_MAX >> 1); |
41 | #else |
42 | return (U32) f; |
43 | #endif |
44 | } |
45 | return f > 0 ? U32_MAX : 0 /* NaN */; |
46 | } |
47 | |
48 | I32 |
49 | Perl_cast_i32(pTHX_ NV f) |
50 | { |
51 | if (f < I32_MAX_P1) |
52 | return f < I32_MIN ? I32_MIN : (I32) f; |
53 | if (f < U32_MAX_P1) { |
54 | #if CASTFLAGS & 2 |
55 | if (f < U32_MAX_P1_HALF) |
56 | return (I32)(U32) f; |
57 | f -= U32_MAX_P1_HALF; |
58 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
59 | #else |
60 | return (I32)(U32) f; |
61 | #endif |
62 | } |
63 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
64 | } |
65 | |
66 | IV |
67 | Perl_cast_iv(pTHX_ NV f) |
68 | { |
69 | if (f < IV_MAX_P1) |
70 | return f < IV_MIN ? IV_MIN : (IV) f; |
71 | if (f < UV_MAX_P1) { |
72 | #if CASTFLAGS & 2 |
73 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
74 | if (f < UV_MAX_P1_HALF) |
75 | return (IV)(UV) f; |
76 | f -= UV_MAX_P1_HALF; |
77 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
78 | #else |
79 | return (IV)(UV) f; |
80 | #endif |
81 | } |
82 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
83 | } |
84 | |
85 | UV |
86 | Perl_cast_uv(pTHX_ NV f) |
87 | { |
88 | if (f < 0.0) |
89 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
90 | if (f < UV_MAX_P1) { |
91 | #if CASTFLAGS & 2 |
92 | if (f < UV_MAX_P1_HALF) |
93 | return (UV) f; |
94 | f -= UV_MAX_P1_HALF; |
95 | return ((UV) f) | (1 + UV_MAX >> 1); |
96 | #else |
97 | return (UV) f; |
98 | #endif |
99 | } |
100 | return f > 0 ? UV_MAX : 0 /* NaN */; |
101 | } |
102 | |
103 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) |
104 | /* |
105 | * This hack is to force load of "huge" support from libm.a |
106 | * So it is in perl for (say) POSIX to use. |
107 | * Needed for SunOS with Sun's 'acc' for example. |
108 | */ |
109 | NV |
110 | Perl_huge(void) |
111 | { |
112 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) |
113 | return HUGE_VALL; |
114 | # endif |
115 | return HUGE_VAL; |
116 | } |
117 | #endif |
118 | |
53305cf1 |
119 | /* |
120 | =for apidoc grok_bin |
98994639 |
121 | |
53305cf1 |
122 | converts a string representing a binary number to numeric form. |
123 | |
124 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
125 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
126 | The scan stops at the end of the string, or the first invalid character. |
7b667b5f |
127 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
128 | invalid character will also trigger a warning. |
129 | On return I<*len> is set to the length of the scanned string, |
130 | and I<*flags> gives output flags. |
53305cf1 |
131 | |
7fc63493 |
132 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear, |
53305cf1 |
133 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
134 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
135 | and writes the value to I<*result> (or the value is discarded if I<result> |
136 | is NULL). |
137 | |
7b667b5f |
138 | The binary number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
139 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
140 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
141 | number may use '_' characters to separate digits. |
142 | |
143 | =cut |
144 | */ |
145 | |
146 | UV |
7fc63493 |
147 | Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
148 | const char *s = start; |
149 | STRLEN len = *len_p; |
150 | UV value = 0; |
151 | NV value_nv = 0; |
152 | |
153 | const UV max_div_2 = UV_MAX / 2; |
7fc63493 |
154 | const bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
53305cf1 |
155 | bool overflowed = FALSE; |
7fc63493 |
156 | char bit; |
53305cf1 |
157 | |
a4c04bdc |
158 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
159 | /* strip off leading b or 0b. |
160 | for compatibility silently suffer "b" and "0b" as valid binary |
161 | numbers. */ |
162 | if (len >= 1) { |
163 | if (s[0] == 'b') { |
164 | s++; |
165 | len--; |
166 | } |
167 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
168 | s+=2; |
169 | len-=2; |
170 | } |
171 | } |
53305cf1 |
172 | } |
173 | |
7fc63493 |
174 | for (; len-- && (bit = *s); s++) { |
53305cf1 |
175 | if (bit == '0' || bit == '1') { |
176 | /* Write it in this wonky order with a goto to attempt to get the |
177 | compiler to make the common case integer-only loop pretty tight. |
178 | With gcc seems to be much straighter code than old scan_bin. */ |
179 | redo: |
180 | if (!overflowed) { |
181 | if (value <= max_div_2) { |
182 | value = (value << 1) | (bit - '0'); |
183 | continue; |
184 | } |
185 | /* Bah. We're just overflowed. */ |
186 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
187 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
188 | "Integer overflow in binary number"); |
189 | overflowed = TRUE; |
190 | value_nv = (NV) value; |
191 | } |
192 | value_nv *= 2.0; |
98994639 |
193 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
194 | * represent a UV this summing of small low-order numbers |
98994639 |
195 | * is a waste of time (because the NV cannot preserve |
196 | * the low-order bits anyway): we could just remember when |
53305cf1 |
197 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
198 | * right amount. */ |
53305cf1 |
199 | value_nv += (NV)(bit - '0'); |
200 | continue; |
201 | } |
202 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
203 | && (bit == '0' || bit == '1')) |
98994639 |
204 | { |
205 | --len; |
206 | ++s; |
53305cf1 |
207 | goto redo; |
98994639 |
208 | } |
94dd8549 |
209 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
210 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
211 | "Illegal binary digit '%c' ignored", *s); |
212 | break; |
98994639 |
213 | } |
53305cf1 |
214 | |
215 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
216 | #if UVSIZE > 4 |
53305cf1 |
217 | || (!overflowed && value > 0xffffffff ) |
98994639 |
218 | #endif |
219 | ) { |
220 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
221 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
222 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
223 | } |
224 | *len_p = s - start; |
225 | if (!overflowed) { |
226 | *flags = 0; |
227 | return value; |
98994639 |
228 | } |
53305cf1 |
229 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
230 | if (result) |
231 | *result = value_nv; |
232 | return UV_MAX; |
98994639 |
233 | } |
234 | |
53305cf1 |
235 | /* |
236 | =for apidoc grok_hex |
237 | |
238 | converts a string representing a hex number to numeric form. |
239 | |
240 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
241 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
7b667b5f |
242 | The scan stops at the end of the string, or the first invalid character. |
243 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
244 | invalid character will also trigger a warning. |
245 | On return I<*len> is set to the length of the scanned string, |
246 | and I<*flags> gives output flags. |
53305cf1 |
247 | |
248 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
249 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
250 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
251 | and writes the value to I<*result> (or the value is discarded if I<result> |
252 | is NULL). |
253 | |
d1be9408 |
254 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
255 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
256 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
257 | number may use '_' characters to separate digits. |
258 | |
259 | =cut |
260 | */ |
261 | |
262 | UV |
7fc63493 |
263 | Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
27da23d5 |
264 | dVAR; |
53305cf1 |
265 | const char *s = start; |
266 | STRLEN len = *len_p; |
267 | UV value = 0; |
268 | NV value_nv = 0; |
269 | |
270 | const UV max_div_16 = UV_MAX / 16; |
7fc63493 |
271 | const bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
53305cf1 |
272 | bool overflowed = FALSE; |
98994639 |
273 | |
a4c04bdc |
274 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
275 | /* strip off leading x or 0x. |
276 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
277 | */ |
278 | if (len >= 1) { |
279 | if (s[0] == 'x') { |
280 | s++; |
281 | len--; |
282 | } |
283 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
284 | s+=2; |
285 | len-=2; |
286 | } |
287 | } |
98994639 |
288 | } |
289 | |
290 | for (; len-- && *s; s++) { |
a3b680e6 |
291 | const char *hexdigit = strchr(PL_hexdigit, *s); |
53305cf1 |
292 | if (hexdigit) { |
293 | /* Write it in this wonky order with a goto to attempt to get the |
294 | compiler to make the common case integer-only loop pretty tight. |
295 | With gcc seems to be much straighter code than old scan_hex. */ |
296 | redo: |
297 | if (!overflowed) { |
298 | if (value <= max_div_16) { |
299 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
300 | continue; |
301 | } |
302 | /* Bah. We're just overflowed. */ |
303 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
304 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
305 | "Integer overflow in hexadecimal number"); |
306 | overflowed = TRUE; |
307 | value_nv = (NV) value; |
308 | } |
309 | value_nv *= 16.0; |
310 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
311 | * represent a UV this summing of small low-order numbers |
53305cf1 |
312 | * is a waste of time (because the NV cannot preserve |
313 | * the low-order bits anyway): we could just remember when |
314 | * did we overflow and in the end just multiply value_nv by the |
315 | * right amount of 16-tuples. */ |
316 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
317 | continue; |
318 | } |
319 | if (*s == '_' && len && allow_underscores && s[1] |
e1ec3a88 |
320 | && (hexdigit = strchr(PL_hexdigit, s[1]))) |
98994639 |
321 | { |
322 | --len; |
323 | ++s; |
53305cf1 |
324 | goto redo; |
98994639 |
325 | } |
94dd8549 |
326 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
327 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
328 | "Illegal hexadecimal digit '%c' ignored", *s); |
329 | break; |
330 | } |
331 | |
332 | if ( ( overflowed && value_nv > 4294967295.0) |
333 | #if UVSIZE > 4 |
334 | || (!overflowed && value > 0xffffffff ) |
335 | #endif |
336 | ) { |
337 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
338 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
339 | "Hexadecimal number > 0xffffffff non-portable"); |
340 | } |
341 | *len_p = s - start; |
342 | if (!overflowed) { |
343 | *flags = 0; |
344 | return value; |
345 | } |
346 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
347 | if (result) |
348 | *result = value_nv; |
349 | return UV_MAX; |
350 | } |
351 | |
352 | /* |
353 | =for apidoc grok_oct |
354 | |
7b667b5f |
355 | converts a string representing an octal number to numeric form. |
356 | |
357 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
358 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
359 | The scan stops at the end of the string, or the first invalid character. |
360 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
361 | invalid character will also trigger a warning. |
362 | On return I<*len> is set to the length of the scanned string, |
363 | and I<*flags> gives output flags. |
364 | |
365 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
366 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct> |
367 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
368 | and writes the value to I<*result> (or the value is discarded if I<result> |
369 | is NULL). |
370 | |
371 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal |
372 | number may use '_' characters to separate digits. |
53305cf1 |
373 | |
374 | =cut |
375 | */ |
376 | |
377 | UV |
7fc63493 |
378 | Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
379 | const char *s = start; |
380 | STRLEN len = *len_p; |
381 | UV value = 0; |
382 | NV value_nv = 0; |
383 | |
384 | const UV max_div_8 = UV_MAX / 8; |
7fc63493 |
385 | const bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
53305cf1 |
386 | bool overflowed = FALSE; |
387 | |
388 | for (; len-- && *s; s++) { |
389 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
390 | out front allows slicker code. */ |
391 | int digit = *s - '0'; |
392 | if (digit >= 0 && digit <= 7) { |
393 | /* Write it in this wonky order with a goto to attempt to get the |
394 | compiler to make the common case integer-only loop pretty tight. |
395 | */ |
396 | redo: |
397 | if (!overflowed) { |
398 | if (value <= max_div_8) { |
399 | value = (value << 3) | digit; |
400 | continue; |
401 | } |
402 | /* Bah. We're just overflowed. */ |
403 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
404 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
405 | "Integer overflow in octal number"); |
406 | overflowed = TRUE; |
407 | value_nv = (NV) value; |
408 | } |
409 | value_nv *= 8.0; |
98994639 |
410 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
411 | * represent a UV this summing of small low-order numbers |
98994639 |
412 | * is a waste of time (because the NV cannot preserve |
413 | * the low-order bits anyway): we could just remember when |
53305cf1 |
414 | * did we overflow and in the end just multiply value_nv by the |
415 | * right amount of 8-tuples. */ |
416 | value_nv += (NV)digit; |
417 | continue; |
418 | } |
419 | if (digit == ('_' - '0') && len && allow_underscores |
420 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
421 | { |
422 | --len; |
423 | ++s; |
424 | goto redo; |
425 | } |
426 | /* Allow \octal to work the DWIM way (that is, stop scanning |
7b667b5f |
427 | * as soon as non-octal characters are seen, complain only if |
53305cf1 |
428 | * someone seems to want to use the digits eight and nine). */ |
429 | if (digit == 8 || digit == 9) { |
94dd8549 |
430 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
431 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
432 | "Illegal octal digit '%c' ignored", *s); |
433 | } |
434 | break; |
98994639 |
435 | } |
53305cf1 |
436 | |
437 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
438 | #if UVSIZE > 4 |
53305cf1 |
439 | || (!overflowed && value > 0xffffffff ) |
98994639 |
440 | #endif |
441 | ) { |
442 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
443 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
444 | "Octal number > 037777777777 non-portable"); |
445 | } |
446 | *len_p = s - start; |
447 | if (!overflowed) { |
448 | *flags = 0; |
449 | return value; |
98994639 |
450 | } |
53305cf1 |
451 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
452 | if (result) |
453 | *result = value_nv; |
454 | return UV_MAX; |
455 | } |
456 | |
457 | /* |
458 | =for apidoc scan_bin |
459 | |
460 | For backwards compatibility. Use C<grok_bin> instead. |
461 | |
462 | =for apidoc scan_hex |
463 | |
464 | For backwards compatibility. Use C<grok_hex> instead. |
465 | |
466 | =for apidoc scan_oct |
467 | |
468 | For backwards compatibility. Use C<grok_oct> instead. |
469 | |
470 | =cut |
471 | */ |
472 | |
473 | NV |
73d840c0 |
474 | Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
475 | { |
476 | NV rnv; |
477 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
478 | const UV ruv = grok_bin (start, &len, &flags, &rnv); |
53305cf1 |
479 | |
480 | *retlen = len; |
481 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
482 | } |
483 | |
484 | NV |
73d840c0 |
485 | Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
486 | { |
487 | NV rnv; |
488 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
489 | const UV ruv = grok_oct (start, &len, &flags, &rnv); |
53305cf1 |
490 | |
491 | *retlen = len; |
492 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
493 | } |
494 | |
495 | NV |
73d840c0 |
496 | Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
497 | { |
498 | NV rnv; |
499 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
500 | const UV ruv = grok_hex (start, &len, &flags, &rnv); |
53305cf1 |
501 | |
502 | *retlen = len; |
503 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
504 | } |
505 | |
506 | /* |
507 | =for apidoc grok_numeric_radix |
508 | |
509 | Scan and skip for a numeric decimal separator (radix). |
510 | |
511 | =cut |
512 | */ |
513 | bool |
514 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
515 | { |
516 | #ifdef USE_LOCALE_NUMERIC |
517 | if (PL_numeric_radix_sv && IN_LOCALE) { |
518 | STRLEN len; |
73d840c0 |
519 | const char* radix = SvPV(PL_numeric_radix_sv, len); |
98994639 |
520 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
521 | *sp += len; |
522 | return TRUE; |
523 | } |
524 | } |
525 | /* always try "." if numeric radix didn't match because |
526 | * we may have data from different locales mixed */ |
527 | #endif |
528 | if (*sp < send && **sp == '.') { |
529 | ++*sp; |
530 | return TRUE; |
531 | } |
532 | return FALSE; |
533 | } |
534 | |
535 | /* |
536 | =for apidoc grok_number |
537 | |
538 | Recognise (or not) a number. The type of the number is returned |
539 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
540 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
541 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
542 | |
543 | If the value of the number can fit an in UV, it is returned in the *valuep |
544 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
545 | will never be set unless *valuep is valid, but *valuep may have been assigned |
546 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
547 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
548 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
549 | |
550 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
551 | seen (in which case *valuep gives the true value truncated to an integer), and |
552 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
553 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
554 | number is larger than a UV. |
98994639 |
555 | |
556 | =cut |
557 | */ |
558 | int |
559 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
560 | { |
60939fb8 |
561 | const char *s = pv; |
562 | const char *send = pv + len; |
563 | const UV max_div_10 = UV_MAX / 10; |
564 | const char max_mod_10 = UV_MAX % 10; |
565 | int numtype = 0; |
566 | int sawinf = 0; |
aa8b85de |
567 | int sawnan = 0; |
60939fb8 |
568 | |
569 | while (s < send && isSPACE(*s)) |
570 | s++; |
571 | if (s == send) { |
572 | return 0; |
573 | } else if (*s == '-') { |
574 | s++; |
575 | numtype = IS_NUMBER_NEG; |
576 | } |
577 | else if (*s == '+') |
578 | s++; |
579 | |
580 | if (s == send) |
581 | return 0; |
582 | |
583 | /* next must be digit or the radix separator or beginning of infinity */ |
584 | if (isDIGIT(*s)) { |
585 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
586 | overflow. */ |
587 | UV value = *s - '0'; |
588 | /* This construction seems to be more optimiser friendly. |
589 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
590 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
591 | In theory the optimiser could deduce how far to unroll the loop |
592 | before checking for overflow. */ |
58bb9ec3 |
593 | if (++s < send) { |
594 | int digit = *s - '0'; |
60939fb8 |
595 | if (digit >= 0 && digit <= 9) { |
596 | value = value * 10 + digit; |
58bb9ec3 |
597 | if (++s < send) { |
598 | digit = *s - '0'; |
60939fb8 |
599 | if (digit >= 0 && digit <= 9) { |
600 | value = value * 10 + digit; |
58bb9ec3 |
601 | if (++s < send) { |
602 | digit = *s - '0'; |
60939fb8 |
603 | if (digit >= 0 && digit <= 9) { |
604 | value = value * 10 + digit; |
58bb9ec3 |
605 | if (++s < send) { |
606 | digit = *s - '0'; |
60939fb8 |
607 | if (digit >= 0 && digit <= 9) { |
608 | value = value * 10 + digit; |
58bb9ec3 |
609 | if (++s < send) { |
610 | digit = *s - '0'; |
60939fb8 |
611 | if (digit >= 0 && digit <= 9) { |
612 | value = value * 10 + digit; |
58bb9ec3 |
613 | if (++s < send) { |
614 | digit = *s - '0'; |
60939fb8 |
615 | if (digit >= 0 && digit <= 9) { |
616 | value = value * 10 + digit; |
58bb9ec3 |
617 | if (++s < send) { |
618 | digit = *s - '0'; |
60939fb8 |
619 | if (digit >= 0 && digit <= 9) { |
620 | value = value * 10 + digit; |
58bb9ec3 |
621 | if (++s < send) { |
622 | digit = *s - '0'; |
60939fb8 |
623 | if (digit >= 0 && digit <= 9) { |
624 | value = value * 10 + digit; |
58bb9ec3 |
625 | if (++s < send) { |
60939fb8 |
626 | /* Now got 9 digits, so need to check |
627 | each time for overflow. */ |
58bb9ec3 |
628 | digit = *s - '0'; |
60939fb8 |
629 | while (digit >= 0 && digit <= 9 |
630 | && (value < max_div_10 |
631 | || (value == max_div_10 |
632 | && digit <= max_mod_10))) { |
633 | value = value * 10 + digit; |
58bb9ec3 |
634 | if (++s < send) |
635 | digit = *s - '0'; |
60939fb8 |
636 | else |
637 | break; |
638 | } |
639 | if (digit >= 0 && digit <= 9 |
51bd16da |
640 | && (s < send)) { |
60939fb8 |
641 | /* value overflowed. |
642 | skip the remaining digits, don't |
643 | worry about setting *valuep. */ |
644 | do { |
645 | s++; |
646 | } while (s < send && isDIGIT(*s)); |
647 | numtype |= |
648 | IS_NUMBER_GREATER_THAN_UV_MAX; |
649 | goto skip_value; |
650 | } |
651 | } |
652 | } |
98994639 |
653 | } |
60939fb8 |
654 | } |
655 | } |
656 | } |
657 | } |
658 | } |
659 | } |
660 | } |
661 | } |
662 | } |
663 | } |
664 | } |
98994639 |
665 | } |
60939fb8 |
666 | } |
98994639 |
667 | } |
60939fb8 |
668 | numtype |= IS_NUMBER_IN_UV; |
669 | if (valuep) |
670 | *valuep = value; |
671 | |
672 | skip_value: |
673 | if (GROK_NUMERIC_RADIX(&s, send)) { |
674 | numtype |= IS_NUMBER_NOT_INT; |
675 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
676 | s++; |
98994639 |
677 | } |
60939fb8 |
678 | } |
679 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
680 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
681 | /* no digits before the radix means we need digits after it */ |
682 | if (s < send && isDIGIT(*s)) { |
683 | do { |
684 | s++; |
685 | } while (s < send && isDIGIT(*s)); |
686 | if (valuep) { |
687 | /* integer approximation is valid - it's 0. */ |
688 | *valuep = 0; |
689 | } |
98994639 |
690 | } |
60939fb8 |
691 | else |
692 | return 0; |
693 | } else if (*s == 'I' || *s == 'i') { |
694 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
695 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
696 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
697 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
698 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
699 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
700 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
701 | s++; |
98994639 |
702 | } |
60939fb8 |
703 | sawinf = 1; |
aa8b85de |
704 | } else if (*s == 'N' || *s == 'n') { |
705 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
706 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
707 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
708 | s++; |
709 | sawnan = 1; |
710 | } else |
98994639 |
711 | return 0; |
60939fb8 |
712 | |
713 | if (sawinf) { |
714 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
715 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
716 | } else if (sawnan) { |
717 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
718 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
719 | } else if (s < send) { |
720 | /* we can have an optional exponent part */ |
721 | if (*s == 'e' || *s == 'E') { |
722 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
723 | numtype &= IS_NUMBER_NEG; |
724 | numtype |= IS_NUMBER_NOT_INT; |
725 | s++; |
726 | if (s < send && (*s == '-' || *s == '+')) |
727 | s++; |
728 | if (s < send && isDIGIT(*s)) { |
729 | do { |
730 | s++; |
731 | } while (s < send && isDIGIT(*s)); |
732 | } |
733 | else |
734 | return 0; |
735 | } |
736 | } |
737 | while (s < send && isSPACE(*s)) |
738 | s++; |
739 | if (s >= send) |
aa8b85de |
740 | return numtype; |
60939fb8 |
741 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
742 | if (valuep) |
743 | *valuep = 0; |
744 | return IS_NUMBER_IN_UV; |
745 | } |
746 | return 0; |
98994639 |
747 | } |
748 | |
4801ca72 |
749 | STATIC NV |
98994639 |
750 | S_mulexp10(NV value, I32 exponent) |
751 | { |
752 | NV result = 1.0; |
753 | NV power = 10.0; |
754 | bool negative = 0; |
755 | I32 bit; |
756 | |
757 | if (exponent == 0) |
758 | return value; |
20f6aaab |
759 | if (value == 0) |
66a1b24b |
760 | return (NV)0; |
87032ba1 |
761 | |
24866caa |
762 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
763 | * and that format does not have *easy* capabilities [1] for |
24866caa |
764 | * overflowing doubles 'silently' as IEEE fp does. We also need |
765 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
766 | * range is much larger than D_FLOAT it still doesn't do silent |
767 | * overflow. Therefore we need to detect early whether we would |
768 | * overflow (this is the behaviour of the native string-to-float |
769 | * conversion routines, and therefore of native applications, too). |
67597c89 |
770 | * |
24866caa |
771 | * [1] Trying to establish a condition handler to trap floating point |
772 | * exceptions is not a good idea. */ |
87032ba1 |
773 | |
774 | /* In UNICOS and in certain Cray models (such as T90) there is no |
775 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
776 | * There is something you can do if you are willing to use some |
777 | * inline assembler: the instruction is called DFI-- but that will |
778 | * disable *all* floating point interrupts, a little bit too large |
779 | * a hammer. Therefore we need to catch potential overflows before |
780 | * it's too late. */ |
353813d9 |
781 | |
782 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
783 | STMT_START { |
784 | NV exp_v = log10(value); |
785 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
786 | return NV_MAX; |
787 | if (exponent < 0) { |
788 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
789 | return 0.0; |
790 | while (-exponent >= NV_MAX_10_EXP) { |
791 | /* combination does not overflow, but 10^(-exponent) does */ |
792 | value /= 10; |
793 | ++exponent; |
794 | } |
795 | } |
796 | } STMT_END; |
87032ba1 |
797 | #endif |
798 | |
353813d9 |
799 | if (exponent < 0) { |
800 | negative = 1; |
801 | exponent = -exponent; |
802 | } |
98994639 |
803 | for (bit = 1; exponent; bit <<= 1) { |
804 | if (exponent & bit) { |
805 | exponent ^= bit; |
806 | result *= power; |
236f0012 |
807 | /* Floating point exceptions are supposed to be turned off, |
808 | * but if we're obviously done, don't risk another iteration. |
809 | */ |
810 | if (exponent == 0) break; |
98994639 |
811 | } |
812 | power *= power; |
813 | } |
814 | return negative ? value / result : value * result; |
815 | } |
816 | |
817 | NV |
818 | Perl_my_atof(pTHX_ const char* s) |
819 | { |
820 | NV x = 0.0; |
821 | #ifdef USE_LOCALE_NUMERIC |
822 | if (PL_numeric_local && IN_LOCALE) { |
823 | NV y; |
824 | |
825 | /* Scan the number twice; once using locale and once without; |
826 | * choose the larger result (in absolute value). */ |
a36244b7 |
827 | Perl_atof2(s, x); |
98994639 |
828 | SET_NUMERIC_STANDARD(); |
a36244b7 |
829 | Perl_atof2(s, y); |
98994639 |
830 | SET_NUMERIC_LOCAL(); |
831 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
832 | return y; |
833 | } |
834 | else |
a36244b7 |
835 | Perl_atof2(s, x); |
98994639 |
836 | #else |
a36244b7 |
837 | Perl_atof2(s, x); |
98994639 |
838 | #endif |
839 | return x; |
840 | } |
841 | |
842 | char* |
843 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
844 | { |
20f6aaab |
845 | NV result[3] = {0.0, 0.0, 0.0}; |
e1ec3a88 |
846 | const char* s = orig; |
a36244b7 |
847 | #ifdef USE_PERL_ATOF |
20f6aaab |
848 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
849 | bool negative = 0; |
e1ec3a88 |
850 | const char* send = s + strlen(orig) - 1; |
8194bf88 |
851 | bool seen_digit = 0; |
20f6aaab |
852 | I32 exp_adjust[2] = {0,0}; |
853 | I32 exp_acc[2] = {-1, -1}; |
854 | /* the current exponent adjust for the accumulators */ |
98994639 |
855 | I32 exponent = 0; |
8194bf88 |
856 | I32 seen_dp = 0; |
20f6aaab |
857 | I32 digit = 0; |
858 | I32 old_digit = 0; |
8194bf88 |
859 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
860 | |
861 | /* There is no point in processing more significant digits |
862 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
863 | * while we need an upper-bound value. We add 2 to account for this; |
864 | * since it will have been conservative on both the first and last digit. |
865 | * For example a 32-bit mantissa with an exponent of 4 would have |
866 | * exact values in the set |
867 | * 4 |
868 | * 8 |
869 | * .. |
870 | * 17179869172 |
871 | * 17179869176 |
872 | * 17179869180 |
873 | * |
874 | * where for the purposes of calculating NV_DIG we would have to discount |
875 | * both the first and last digit, since neither can hold all values from |
876 | * 0..9; but for calculating the value we must examine those two digits. |
877 | */ |
878 | #define MAX_SIG_DIGITS (NV_DIG+2) |
879 | |
880 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
881 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
882 | |
96a05aee |
883 | /* leading whitespace */ |
884 | while (isSPACE(*s)) |
885 | ++s; |
886 | |
98994639 |
887 | /* sign */ |
888 | switch (*s) { |
889 | case '-': |
890 | negative = 1; |
891 | /* fall through */ |
892 | case '+': |
893 | ++s; |
894 | } |
895 | |
8194bf88 |
896 | /* we accumulate digits into an integer; when this becomes too |
897 | * large, we add the total to NV and start again */ |
98994639 |
898 | |
8194bf88 |
899 | while (1) { |
900 | if (isDIGIT(*s)) { |
901 | seen_digit = 1; |
20f6aaab |
902 | old_digit = digit; |
8194bf88 |
903 | digit = *s++ - '0'; |
20f6aaab |
904 | if (seen_dp) |
905 | exp_adjust[1]++; |
98994639 |
906 | |
8194bf88 |
907 | /* don't start counting until we see the first significant |
908 | * digit, eg the 5 in 0.00005... */ |
909 | if (!sig_digits && digit == 0) |
910 | continue; |
911 | |
912 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
913 | /* limits of precision reached */ |
20f6aaab |
914 | if (digit > 5) { |
915 | ++accumulator[seen_dp]; |
916 | } else if (digit == 5) { |
917 | if (old_digit % 2) { /* round to even - Allen */ |
918 | ++accumulator[seen_dp]; |
919 | } |
920 | } |
921 | if (seen_dp) { |
922 | exp_adjust[1]--; |
923 | } else { |
924 | exp_adjust[0]++; |
925 | } |
8194bf88 |
926 | /* skip remaining digits */ |
98994639 |
927 | while (isDIGIT(*s)) { |
98994639 |
928 | ++s; |
20f6aaab |
929 | if (! seen_dp) { |
930 | exp_adjust[0]++; |
931 | } |
98994639 |
932 | } |
933 | /* warn of loss of precision? */ |
98994639 |
934 | } |
8194bf88 |
935 | else { |
20f6aaab |
936 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
937 | /* add accumulator to result and start again */ |
20f6aaab |
938 | result[seen_dp] = S_mulexp10(result[seen_dp], |
939 | exp_acc[seen_dp]) |
940 | + (NV)accumulator[seen_dp]; |
941 | accumulator[seen_dp] = 0; |
942 | exp_acc[seen_dp] = 0; |
98994639 |
943 | } |
20f6aaab |
944 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
945 | ++exp_acc[seen_dp]; |
98994639 |
946 | } |
8194bf88 |
947 | } |
e1ec3a88 |
948 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) { |
8194bf88 |
949 | seen_dp = 1; |
20f6aaab |
950 | if (sig_digits > MAX_SIG_DIGITS) { |
951 | ++s; |
952 | while (isDIGIT(*s)) { |
953 | ++s; |
954 | } |
955 | break; |
956 | } |
8194bf88 |
957 | } |
958 | else { |
959 | break; |
98994639 |
960 | } |
961 | } |
962 | |
20f6aaab |
963 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
964 | if (seen_dp) { |
965 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
966 | } |
98994639 |
967 | |
8194bf88 |
968 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
969 | bool expnegative = 0; |
970 | |
971 | ++s; |
972 | switch (*s) { |
973 | case '-': |
974 | expnegative = 1; |
975 | /* fall through */ |
976 | case '+': |
977 | ++s; |
978 | } |
979 | while (isDIGIT(*s)) |
980 | exponent = exponent * 10 + (*s++ - '0'); |
981 | if (expnegative) |
982 | exponent = -exponent; |
983 | } |
984 | |
20f6aaab |
985 | |
986 | |
98994639 |
987 | /* now apply the exponent */ |
20f6aaab |
988 | |
989 | if (seen_dp) { |
990 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
991 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
992 | } else { |
993 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
994 | } |
98994639 |
995 | |
996 | /* now apply the sign */ |
997 | if (negative) |
20f6aaab |
998 | result[2] = -result[2]; |
a36244b7 |
999 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
1000 | *value = result[2]; |
73d840c0 |
1001 | return (char *)s; |
98994639 |
1002 | } |
1003 | |
55954f19 |
1004 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) |
1005 | long double |
1006 | Perl_my_modfl(long double x, long double *ip) |
1007 | { |
1008 | *ip = aintl(x); |
1009 | return (x == *ip ? copysignl(0.0L, x) : x - *ip); |
1010 | } |
1011 | #endif |
1012 | |
1013 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) |
1014 | long double |
1015 | Perl_my_frexpl(long double x, int *e) { |
1016 | *e = x == 0.0L ? 0 : ilogbl(x) + 1; |
1017 | return (scalbnl(x, -*e)); |
1018 | } |
1019 | #endif |
66610fdd |
1020 | |
1021 | /* |
1022 | * Local variables: |
1023 | * c-indentation-style: bsd |
1024 | * c-basic-offset: 4 |
1025 | * indent-tabs-mode: t |
1026 | * End: |
1027 | * |
37442d52 |
1028 | * ex: set ts=8 sts=4 sw=4 noet: |
1029 | */ |