Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
4bb101f2 |
3 | * Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, |
54ca4ee7 |
4 | * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others |
98994639 |
5 | * |
6 | * You may distribute under the terms of either the GNU General Public |
7 | * License or the Artistic License, as specified in the README file. |
8 | * |
9 | */ |
10 | |
11 | /* |
12 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
13 | * wizards count differently to other people." |
14 | */ |
15 | |
ccfc67b7 |
16 | /* |
17 | =head1 Numeric functions |
166f8a29 |
18 | |
19 | This file contains all the stuff needed by perl for manipulating numeric |
20 | values, including such things as replacements for the OS's atof() function |
21 | |
22 | =cut |
23 | |
ccfc67b7 |
24 | */ |
25 | |
98994639 |
26 | #include "EXTERN.h" |
27 | #define PERL_IN_NUMERIC_C |
28 | #include "perl.h" |
29 | |
30 | U32 |
31 | Perl_cast_ulong(pTHX_ NV f) |
32 | { |
96a5add6 |
33 | PERL_UNUSED_CONTEXT; |
98994639 |
34 | if (f < 0.0) |
35 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
36 | if (f < U32_MAX_P1) { |
37 | #if CASTFLAGS & 2 |
38 | if (f < U32_MAX_P1_HALF) |
39 | return (U32) f; |
40 | f -= U32_MAX_P1_HALF; |
41 | return ((U32) f) | (1 + U32_MAX >> 1); |
42 | #else |
43 | return (U32) f; |
44 | #endif |
45 | } |
46 | return f > 0 ? U32_MAX : 0 /* NaN */; |
47 | } |
48 | |
49 | I32 |
50 | Perl_cast_i32(pTHX_ NV f) |
51 | { |
96a5add6 |
52 | PERL_UNUSED_CONTEXT; |
98994639 |
53 | if (f < I32_MAX_P1) |
54 | return f < I32_MIN ? I32_MIN : (I32) f; |
55 | if (f < U32_MAX_P1) { |
56 | #if CASTFLAGS & 2 |
57 | if (f < U32_MAX_P1_HALF) |
58 | return (I32)(U32) f; |
59 | f -= U32_MAX_P1_HALF; |
60 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
61 | #else |
62 | return (I32)(U32) f; |
63 | #endif |
64 | } |
65 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
66 | } |
67 | |
68 | IV |
69 | Perl_cast_iv(pTHX_ NV f) |
70 | { |
96a5add6 |
71 | PERL_UNUSED_CONTEXT; |
98994639 |
72 | if (f < IV_MAX_P1) |
73 | return f < IV_MIN ? IV_MIN : (IV) f; |
74 | if (f < UV_MAX_P1) { |
75 | #if CASTFLAGS & 2 |
76 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
77 | if (f < UV_MAX_P1_HALF) |
78 | return (IV)(UV) f; |
79 | f -= UV_MAX_P1_HALF; |
80 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
81 | #else |
82 | return (IV)(UV) f; |
83 | #endif |
84 | } |
85 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
86 | } |
87 | |
88 | UV |
89 | Perl_cast_uv(pTHX_ NV f) |
90 | { |
96a5add6 |
91 | PERL_UNUSED_CONTEXT; |
98994639 |
92 | if (f < 0.0) |
93 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
94 | if (f < UV_MAX_P1) { |
95 | #if CASTFLAGS & 2 |
96 | if (f < UV_MAX_P1_HALF) |
97 | return (UV) f; |
98 | f -= UV_MAX_P1_HALF; |
99 | return ((UV) f) | (1 + UV_MAX >> 1); |
100 | #else |
101 | return (UV) f; |
102 | #endif |
103 | } |
104 | return f > 0 ? UV_MAX : 0 /* NaN */; |
105 | } |
106 | |
53305cf1 |
107 | /* |
108 | =for apidoc grok_bin |
98994639 |
109 | |
53305cf1 |
110 | converts a string representing a binary number to numeric form. |
111 | |
112 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
113 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
114 | The scan stops at the end of the string, or the first invalid character. |
7b667b5f |
115 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
116 | invalid character will also trigger a warning. |
117 | On return I<*len> is set to the length of the scanned string, |
118 | and I<*flags> gives output flags. |
53305cf1 |
119 | |
7fc63493 |
120 | If the value is <= C<UV_MAX> it is returned as a UV, the output flags are clear, |
53305cf1 |
121 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
122 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
123 | and writes the value to I<*result> (or the value is discarded if I<result> |
124 | is NULL). |
125 | |
7b667b5f |
126 | The binary number may optionally be prefixed with "0b" or "b" unless |
a4c04bdc |
127 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
128 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the binary |
53305cf1 |
129 | number may use '_' characters to separate digits. |
130 | |
131 | =cut |
132 | */ |
133 | |
134 | UV |
7fc63493 |
135 | Perl_grok_bin(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
136 | const char *s = start; |
137 | STRLEN len = *len_p; |
138 | UV value = 0; |
139 | NV value_nv = 0; |
140 | |
141 | const UV max_div_2 = UV_MAX / 2; |
585ec06d |
142 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
143 | bool overflowed = FALSE; |
7fc63493 |
144 | char bit; |
53305cf1 |
145 | |
a4c04bdc |
146 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
147 | /* strip off leading b or 0b. |
148 | for compatibility silently suffer "b" and "0b" as valid binary |
149 | numbers. */ |
150 | if (len >= 1) { |
151 | if (s[0] == 'b') { |
152 | s++; |
153 | len--; |
154 | } |
155 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
156 | s+=2; |
157 | len-=2; |
158 | } |
159 | } |
53305cf1 |
160 | } |
161 | |
7fc63493 |
162 | for (; len-- && (bit = *s); s++) { |
53305cf1 |
163 | if (bit == '0' || bit == '1') { |
164 | /* Write it in this wonky order with a goto to attempt to get the |
165 | compiler to make the common case integer-only loop pretty tight. |
166 | With gcc seems to be much straighter code than old scan_bin. */ |
167 | redo: |
168 | if (!overflowed) { |
169 | if (value <= max_div_2) { |
170 | value = (value << 1) | (bit - '0'); |
171 | continue; |
172 | } |
173 | /* Bah. We're just overflowed. */ |
174 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
175 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
176 | "Integer overflow in binary number"); |
177 | overflowed = TRUE; |
178 | value_nv = (NV) value; |
179 | } |
180 | value_nv *= 2.0; |
98994639 |
181 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
182 | * represent a UV this summing of small low-order numbers |
98994639 |
183 | * is a waste of time (because the NV cannot preserve |
184 | * the low-order bits anyway): we could just remember when |
53305cf1 |
185 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
186 | * right amount. */ |
53305cf1 |
187 | value_nv += (NV)(bit - '0'); |
188 | continue; |
189 | } |
190 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
191 | && (bit == '0' || bit == '1')) |
98994639 |
192 | { |
193 | --len; |
194 | ++s; |
53305cf1 |
195 | goto redo; |
98994639 |
196 | } |
94dd8549 |
197 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
198 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
199 | "Illegal binary digit '%c' ignored", *s); |
200 | break; |
98994639 |
201 | } |
53305cf1 |
202 | |
203 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
204 | #if UVSIZE > 4 |
53305cf1 |
205 | || (!overflowed && value > 0xffffffff ) |
98994639 |
206 | #endif |
207 | ) { |
208 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
209 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
210 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
211 | } |
212 | *len_p = s - start; |
213 | if (!overflowed) { |
214 | *flags = 0; |
215 | return value; |
98994639 |
216 | } |
53305cf1 |
217 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
218 | if (result) |
219 | *result = value_nv; |
220 | return UV_MAX; |
98994639 |
221 | } |
222 | |
53305cf1 |
223 | /* |
224 | =for apidoc grok_hex |
225 | |
226 | converts a string representing a hex number to numeric form. |
227 | |
228 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
229 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
7b667b5f |
230 | The scan stops at the end of the string, or the first invalid character. |
231 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
232 | invalid character will also trigger a warning. |
233 | On return I<*len> is set to the length of the scanned string, |
234 | and I<*flags> gives output flags. |
53305cf1 |
235 | |
236 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
237 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
238 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
239 | and writes the value to I<*result> (or the value is discarded if I<result> |
240 | is NULL). |
241 | |
d1be9408 |
242 | The hex number may optionally be prefixed with "0x" or "x" unless |
a4c04bdc |
243 | C<PERL_SCAN_DISALLOW_PREFIX> is set in I<*flags> on entry. If |
244 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the hex |
53305cf1 |
245 | number may use '_' characters to separate digits. |
246 | |
247 | =cut |
248 | */ |
249 | |
250 | UV |
7fc63493 |
251 | Perl_grok_hex(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
27da23d5 |
252 | dVAR; |
53305cf1 |
253 | const char *s = start; |
254 | STRLEN len = *len_p; |
255 | UV value = 0; |
256 | NV value_nv = 0; |
257 | |
258 | const UV max_div_16 = UV_MAX / 16; |
585ec06d |
259 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
260 | bool overflowed = FALSE; |
98994639 |
261 | |
a4c04bdc |
262 | if (!(*flags & PERL_SCAN_DISALLOW_PREFIX)) { |
263 | /* strip off leading x or 0x. |
264 | for compatibility silently suffer "x" and "0x" as valid hex numbers. |
265 | */ |
266 | if (len >= 1) { |
267 | if (s[0] == 'x') { |
268 | s++; |
269 | len--; |
270 | } |
271 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
272 | s+=2; |
273 | len-=2; |
274 | } |
275 | } |
98994639 |
276 | } |
277 | |
278 | for (; len-- && *s; s++) { |
a3b680e6 |
279 | const char *hexdigit = strchr(PL_hexdigit, *s); |
53305cf1 |
280 | if (hexdigit) { |
281 | /* Write it in this wonky order with a goto to attempt to get the |
282 | compiler to make the common case integer-only loop pretty tight. |
283 | With gcc seems to be much straighter code than old scan_hex. */ |
284 | redo: |
285 | if (!overflowed) { |
286 | if (value <= max_div_16) { |
287 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
288 | continue; |
289 | } |
290 | /* Bah. We're just overflowed. */ |
291 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
292 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
293 | "Integer overflow in hexadecimal number"); |
294 | overflowed = TRUE; |
295 | value_nv = (NV) value; |
296 | } |
297 | value_nv *= 16.0; |
298 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
299 | * represent a UV this summing of small low-order numbers |
53305cf1 |
300 | * is a waste of time (because the NV cannot preserve |
301 | * the low-order bits anyway): we could just remember when |
302 | * did we overflow and in the end just multiply value_nv by the |
303 | * right amount of 16-tuples. */ |
304 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
305 | continue; |
306 | } |
307 | if (*s == '_' && len && allow_underscores && s[1] |
e1ec3a88 |
308 | && (hexdigit = strchr(PL_hexdigit, s[1]))) |
98994639 |
309 | { |
310 | --len; |
311 | ++s; |
53305cf1 |
312 | goto redo; |
98994639 |
313 | } |
94dd8549 |
314 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
315 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
316 | "Illegal hexadecimal digit '%c' ignored", *s); |
317 | break; |
318 | } |
319 | |
320 | if ( ( overflowed && value_nv > 4294967295.0) |
321 | #if UVSIZE > 4 |
322 | || (!overflowed && value > 0xffffffff ) |
323 | #endif |
324 | ) { |
325 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
326 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
327 | "Hexadecimal number > 0xffffffff non-portable"); |
328 | } |
329 | *len_p = s - start; |
330 | if (!overflowed) { |
331 | *flags = 0; |
332 | return value; |
333 | } |
334 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
335 | if (result) |
336 | *result = value_nv; |
337 | return UV_MAX; |
338 | } |
339 | |
340 | /* |
341 | =for apidoc grok_oct |
342 | |
7b667b5f |
343 | converts a string representing an octal number to numeric form. |
344 | |
345 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
346 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
347 | The scan stops at the end of the string, or the first invalid character. |
348 | Unless C<PERL_SCAN_SILENT_ILLDIGIT> is set in I<*flags>, encountering an |
349 | invalid character will also trigger a warning. |
350 | On return I<*len> is set to the length of the scanned string, |
351 | and I<*flags> gives output flags. |
352 | |
353 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
354 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_oct> |
355 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
356 | and writes the value to I<*result> (or the value is discarded if I<result> |
357 | is NULL). |
358 | |
359 | If C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> then the octal |
360 | number may use '_' characters to separate digits. |
53305cf1 |
361 | |
362 | =cut |
363 | */ |
364 | |
365 | UV |
7fc63493 |
366 | Perl_grok_oct(pTHX_ const char *start, STRLEN *len_p, I32 *flags, NV *result) { |
53305cf1 |
367 | const char *s = start; |
368 | STRLEN len = *len_p; |
369 | UV value = 0; |
370 | NV value_nv = 0; |
371 | |
372 | const UV max_div_8 = UV_MAX / 8; |
585ec06d |
373 | const bool allow_underscores = (bool)(*flags & PERL_SCAN_ALLOW_UNDERSCORES); |
53305cf1 |
374 | bool overflowed = FALSE; |
375 | |
376 | for (; len-- && *s; s++) { |
377 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
378 | out front allows slicker code. */ |
379 | int digit = *s - '0'; |
380 | if (digit >= 0 && digit <= 7) { |
381 | /* Write it in this wonky order with a goto to attempt to get the |
382 | compiler to make the common case integer-only loop pretty tight. |
383 | */ |
384 | redo: |
385 | if (!overflowed) { |
386 | if (value <= max_div_8) { |
387 | value = (value << 3) | digit; |
388 | continue; |
389 | } |
390 | /* Bah. We're just overflowed. */ |
391 | if (ckWARN_d(WARN_OVERFLOW)) |
9014280d |
392 | Perl_warner(aTHX_ packWARN(WARN_OVERFLOW), |
53305cf1 |
393 | "Integer overflow in octal number"); |
394 | overflowed = TRUE; |
395 | value_nv = (NV) value; |
396 | } |
397 | value_nv *= 8.0; |
98994639 |
398 | /* If an NV has not enough bits in its mantissa to |
d1be9408 |
399 | * represent a UV this summing of small low-order numbers |
98994639 |
400 | * is a waste of time (because the NV cannot preserve |
401 | * the low-order bits anyway): we could just remember when |
53305cf1 |
402 | * did we overflow and in the end just multiply value_nv by the |
403 | * right amount of 8-tuples. */ |
404 | value_nv += (NV)digit; |
405 | continue; |
406 | } |
407 | if (digit == ('_' - '0') && len && allow_underscores |
408 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
409 | { |
410 | --len; |
411 | ++s; |
412 | goto redo; |
413 | } |
414 | /* Allow \octal to work the DWIM way (that is, stop scanning |
7b667b5f |
415 | * as soon as non-octal characters are seen, complain only if |
53305cf1 |
416 | * someone seems to want to use the digits eight and nine). */ |
417 | if (digit == 8 || digit == 9) { |
94dd8549 |
418 | if (!(*flags & PERL_SCAN_SILENT_ILLDIGIT) && ckWARN(WARN_DIGIT)) |
9014280d |
419 | Perl_warner(aTHX_ packWARN(WARN_DIGIT), |
53305cf1 |
420 | "Illegal octal digit '%c' ignored", *s); |
421 | } |
422 | break; |
98994639 |
423 | } |
53305cf1 |
424 | |
425 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
426 | #if UVSIZE > 4 |
53305cf1 |
427 | || (!overflowed && value > 0xffffffff ) |
98994639 |
428 | #endif |
429 | ) { |
430 | if (ckWARN(WARN_PORTABLE)) |
9014280d |
431 | Perl_warner(aTHX_ packWARN(WARN_PORTABLE), |
53305cf1 |
432 | "Octal number > 037777777777 non-portable"); |
433 | } |
434 | *len_p = s - start; |
435 | if (!overflowed) { |
436 | *flags = 0; |
437 | return value; |
98994639 |
438 | } |
53305cf1 |
439 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
440 | if (result) |
441 | *result = value_nv; |
442 | return UV_MAX; |
443 | } |
444 | |
445 | /* |
446 | =for apidoc scan_bin |
447 | |
448 | For backwards compatibility. Use C<grok_bin> instead. |
449 | |
450 | =for apidoc scan_hex |
451 | |
452 | For backwards compatibility. Use C<grok_hex> instead. |
453 | |
454 | =for apidoc scan_oct |
455 | |
456 | For backwards compatibility. Use C<grok_oct> instead. |
457 | |
458 | =cut |
459 | */ |
460 | |
461 | NV |
73d840c0 |
462 | Perl_scan_bin(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
463 | { |
464 | NV rnv; |
465 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
466 | const UV ruv = grok_bin (start, &len, &flags, &rnv); |
53305cf1 |
467 | |
468 | *retlen = len; |
469 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
470 | } |
471 | |
472 | NV |
73d840c0 |
473 | Perl_scan_oct(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
474 | { |
475 | NV rnv; |
476 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
477 | const UV ruv = grok_oct (start, &len, &flags, &rnv); |
53305cf1 |
478 | |
479 | *retlen = len; |
480 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
481 | } |
482 | |
483 | NV |
73d840c0 |
484 | Perl_scan_hex(pTHX_ const char *start, STRLEN len, STRLEN *retlen) |
53305cf1 |
485 | { |
486 | NV rnv; |
487 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
73d840c0 |
488 | const UV ruv = grok_hex (start, &len, &flags, &rnv); |
53305cf1 |
489 | |
490 | *retlen = len; |
491 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
492 | } |
493 | |
494 | /* |
495 | =for apidoc grok_numeric_radix |
496 | |
497 | Scan and skip for a numeric decimal separator (radix). |
498 | |
499 | =cut |
500 | */ |
501 | bool |
502 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
503 | { |
504 | #ifdef USE_LOCALE_NUMERIC |
97aff369 |
505 | dVAR; |
98994639 |
506 | if (PL_numeric_radix_sv && IN_LOCALE) { |
507 | STRLEN len; |
c4420975 |
508 | const char * const radix = SvPV(PL_numeric_radix_sv, len); |
98994639 |
509 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
510 | *sp += len; |
511 | return TRUE; |
512 | } |
513 | } |
514 | /* always try "." if numeric radix didn't match because |
515 | * we may have data from different locales mixed */ |
516 | #endif |
517 | if (*sp < send && **sp == '.') { |
518 | ++*sp; |
519 | return TRUE; |
520 | } |
521 | return FALSE; |
522 | } |
523 | |
524 | /* |
525 | =for apidoc grok_number |
526 | |
527 | Recognise (or not) a number. The type of the number is returned |
528 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
529 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
530 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
531 | |
532 | If the value of the number can fit an in UV, it is returned in the *valuep |
533 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
534 | will never be set unless *valuep is valid, but *valuep may have been assigned |
535 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
536 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
537 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
538 | |
539 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
540 | seen (in which case *valuep gives the true value truncated to an integer), and |
541 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
542 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
543 | number is larger than a UV. |
98994639 |
544 | |
545 | =cut |
546 | */ |
547 | int |
548 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
549 | { |
60939fb8 |
550 | const char *s = pv; |
c4420975 |
551 | const char * const send = pv + len; |
60939fb8 |
552 | const UV max_div_10 = UV_MAX / 10; |
553 | const char max_mod_10 = UV_MAX % 10; |
554 | int numtype = 0; |
555 | int sawinf = 0; |
aa8b85de |
556 | int sawnan = 0; |
60939fb8 |
557 | |
558 | while (s < send && isSPACE(*s)) |
559 | s++; |
560 | if (s == send) { |
561 | return 0; |
562 | } else if (*s == '-') { |
563 | s++; |
564 | numtype = IS_NUMBER_NEG; |
565 | } |
566 | else if (*s == '+') |
567 | s++; |
568 | |
569 | if (s == send) |
570 | return 0; |
571 | |
572 | /* next must be digit or the radix separator or beginning of infinity */ |
573 | if (isDIGIT(*s)) { |
574 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
575 | overflow. */ |
576 | UV value = *s - '0'; |
577 | /* This construction seems to be more optimiser friendly. |
578 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
579 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
580 | In theory the optimiser could deduce how far to unroll the loop |
581 | before checking for overflow. */ |
58bb9ec3 |
582 | if (++s < send) { |
583 | int digit = *s - '0'; |
60939fb8 |
584 | if (digit >= 0 && digit <= 9) { |
585 | value = value * 10 + digit; |
58bb9ec3 |
586 | if (++s < send) { |
587 | digit = *s - '0'; |
60939fb8 |
588 | if (digit >= 0 && digit <= 9) { |
589 | value = value * 10 + digit; |
58bb9ec3 |
590 | if (++s < send) { |
591 | digit = *s - '0'; |
60939fb8 |
592 | if (digit >= 0 && digit <= 9) { |
593 | value = value * 10 + digit; |
58bb9ec3 |
594 | if (++s < send) { |
595 | digit = *s - '0'; |
60939fb8 |
596 | if (digit >= 0 && digit <= 9) { |
597 | value = value * 10 + digit; |
58bb9ec3 |
598 | if (++s < send) { |
599 | digit = *s - '0'; |
60939fb8 |
600 | if (digit >= 0 && digit <= 9) { |
601 | value = value * 10 + digit; |
58bb9ec3 |
602 | if (++s < send) { |
603 | digit = *s - '0'; |
60939fb8 |
604 | if (digit >= 0 && digit <= 9) { |
605 | value = value * 10 + digit; |
58bb9ec3 |
606 | if (++s < send) { |
607 | digit = *s - '0'; |
60939fb8 |
608 | if (digit >= 0 && digit <= 9) { |
609 | value = value * 10 + digit; |
58bb9ec3 |
610 | if (++s < send) { |
611 | digit = *s - '0'; |
60939fb8 |
612 | if (digit >= 0 && digit <= 9) { |
613 | value = value * 10 + digit; |
58bb9ec3 |
614 | if (++s < send) { |
60939fb8 |
615 | /* Now got 9 digits, so need to check |
616 | each time for overflow. */ |
58bb9ec3 |
617 | digit = *s - '0'; |
60939fb8 |
618 | while (digit >= 0 && digit <= 9 |
619 | && (value < max_div_10 |
620 | || (value == max_div_10 |
621 | && digit <= max_mod_10))) { |
622 | value = value * 10 + digit; |
58bb9ec3 |
623 | if (++s < send) |
624 | digit = *s - '0'; |
60939fb8 |
625 | else |
626 | break; |
627 | } |
628 | if (digit >= 0 && digit <= 9 |
51bd16da |
629 | && (s < send)) { |
60939fb8 |
630 | /* value overflowed. |
631 | skip the remaining digits, don't |
632 | worry about setting *valuep. */ |
633 | do { |
634 | s++; |
635 | } while (s < send && isDIGIT(*s)); |
636 | numtype |= |
637 | IS_NUMBER_GREATER_THAN_UV_MAX; |
638 | goto skip_value; |
639 | } |
640 | } |
641 | } |
98994639 |
642 | } |
60939fb8 |
643 | } |
644 | } |
645 | } |
646 | } |
647 | } |
648 | } |
649 | } |
650 | } |
651 | } |
652 | } |
653 | } |
98994639 |
654 | } |
60939fb8 |
655 | } |
98994639 |
656 | } |
60939fb8 |
657 | numtype |= IS_NUMBER_IN_UV; |
658 | if (valuep) |
659 | *valuep = value; |
660 | |
661 | skip_value: |
662 | if (GROK_NUMERIC_RADIX(&s, send)) { |
663 | numtype |= IS_NUMBER_NOT_INT; |
664 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
665 | s++; |
98994639 |
666 | } |
60939fb8 |
667 | } |
668 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
669 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
670 | /* no digits before the radix means we need digits after it */ |
671 | if (s < send && isDIGIT(*s)) { |
672 | do { |
673 | s++; |
674 | } while (s < send && isDIGIT(*s)); |
675 | if (valuep) { |
676 | /* integer approximation is valid - it's 0. */ |
677 | *valuep = 0; |
678 | } |
98994639 |
679 | } |
60939fb8 |
680 | else |
681 | return 0; |
682 | } else if (*s == 'I' || *s == 'i') { |
683 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
684 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
685 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
686 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
687 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
688 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
689 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
690 | s++; |
98994639 |
691 | } |
60939fb8 |
692 | sawinf = 1; |
aa8b85de |
693 | } else if (*s == 'N' || *s == 'n') { |
694 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
695 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
696 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
697 | s++; |
698 | sawnan = 1; |
699 | } else |
98994639 |
700 | return 0; |
60939fb8 |
701 | |
702 | if (sawinf) { |
703 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
704 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
705 | } else if (sawnan) { |
706 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
707 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
708 | } else if (s < send) { |
709 | /* we can have an optional exponent part */ |
710 | if (*s == 'e' || *s == 'E') { |
711 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
712 | numtype &= IS_NUMBER_NEG; |
713 | numtype |= IS_NUMBER_NOT_INT; |
714 | s++; |
715 | if (s < send && (*s == '-' || *s == '+')) |
716 | s++; |
717 | if (s < send && isDIGIT(*s)) { |
718 | do { |
719 | s++; |
720 | } while (s < send && isDIGIT(*s)); |
721 | } |
722 | else |
723 | return 0; |
724 | } |
725 | } |
726 | while (s < send && isSPACE(*s)) |
727 | s++; |
728 | if (s >= send) |
aa8b85de |
729 | return numtype; |
60939fb8 |
730 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
731 | if (valuep) |
732 | *valuep = 0; |
733 | return IS_NUMBER_IN_UV; |
734 | } |
735 | return 0; |
98994639 |
736 | } |
737 | |
4801ca72 |
738 | STATIC NV |
98994639 |
739 | S_mulexp10(NV value, I32 exponent) |
740 | { |
741 | NV result = 1.0; |
742 | NV power = 10.0; |
743 | bool negative = 0; |
744 | I32 bit; |
745 | |
746 | if (exponent == 0) |
747 | return value; |
20f6aaab |
748 | if (value == 0) |
66a1b24b |
749 | return (NV)0; |
87032ba1 |
750 | |
24866caa |
751 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
752 | * and that format does not have *easy* capabilities [1] for |
24866caa |
753 | * overflowing doubles 'silently' as IEEE fp does. We also need |
754 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
755 | * range is much larger than D_FLOAT it still doesn't do silent |
756 | * overflow. Therefore we need to detect early whether we would |
757 | * overflow (this is the behaviour of the native string-to-float |
758 | * conversion routines, and therefore of native applications, too). |
67597c89 |
759 | * |
24866caa |
760 | * [1] Trying to establish a condition handler to trap floating point |
761 | * exceptions is not a good idea. */ |
87032ba1 |
762 | |
763 | /* In UNICOS and in certain Cray models (such as T90) there is no |
764 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
765 | * There is something you can do if you are willing to use some |
766 | * inline assembler: the instruction is called DFI-- but that will |
767 | * disable *all* floating point interrupts, a little bit too large |
768 | * a hammer. Therefore we need to catch potential overflows before |
769 | * it's too late. */ |
353813d9 |
770 | |
771 | #if ((defined(VMS) && !defined(__IEEE_FP)) || defined(_UNICOS)) && defined(NV_MAX_10_EXP) |
772 | STMT_START { |
c4420975 |
773 | const NV exp_v = log10(value); |
353813d9 |
774 | if (exponent >= NV_MAX_10_EXP || exponent + exp_v >= NV_MAX_10_EXP) |
775 | return NV_MAX; |
776 | if (exponent < 0) { |
777 | if (-(exponent + exp_v) >= NV_MAX_10_EXP) |
778 | return 0.0; |
779 | while (-exponent >= NV_MAX_10_EXP) { |
780 | /* combination does not overflow, but 10^(-exponent) does */ |
781 | value /= 10; |
782 | ++exponent; |
783 | } |
784 | } |
785 | } STMT_END; |
87032ba1 |
786 | #endif |
787 | |
353813d9 |
788 | if (exponent < 0) { |
789 | negative = 1; |
790 | exponent = -exponent; |
791 | } |
98994639 |
792 | for (bit = 1; exponent; bit <<= 1) { |
793 | if (exponent & bit) { |
794 | exponent ^= bit; |
795 | result *= power; |
236f0012 |
796 | /* Floating point exceptions are supposed to be turned off, |
797 | * but if we're obviously done, don't risk another iteration. |
798 | */ |
799 | if (exponent == 0) break; |
98994639 |
800 | } |
801 | power *= power; |
802 | } |
803 | return negative ? value / result : value * result; |
804 | } |
805 | |
806 | NV |
807 | Perl_my_atof(pTHX_ const char* s) |
808 | { |
809 | NV x = 0.0; |
810 | #ifdef USE_LOCALE_NUMERIC |
97aff369 |
811 | dVAR; |
98994639 |
812 | if (PL_numeric_local && IN_LOCALE) { |
813 | NV y; |
814 | |
815 | /* Scan the number twice; once using locale and once without; |
816 | * choose the larger result (in absolute value). */ |
a36244b7 |
817 | Perl_atof2(s, x); |
98994639 |
818 | SET_NUMERIC_STANDARD(); |
a36244b7 |
819 | Perl_atof2(s, y); |
98994639 |
820 | SET_NUMERIC_LOCAL(); |
821 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
822 | return y; |
823 | } |
824 | else |
a36244b7 |
825 | Perl_atof2(s, x); |
98994639 |
826 | #else |
a36244b7 |
827 | Perl_atof2(s, x); |
98994639 |
828 | #endif |
829 | return x; |
830 | } |
831 | |
832 | char* |
833 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
834 | { |
20f6aaab |
835 | NV result[3] = {0.0, 0.0, 0.0}; |
e1ec3a88 |
836 | const char* s = orig; |
a36244b7 |
837 | #ifdef USE_PERL_ATOF |
20f6aaab |
838 | UV accumulator[2] = {0,0}; /* before/after dp */ |
a36244b7 |
839 | bool negative = 0; |
e1ec3a88 |
840 | const char* send = s + strlen(orig) - 1; |
8194bf88 |
841 | bool seen_digit = 0; |
20f6aaab |
842 | I32 exp_adjust[2] = {0,0}; |
843 | I32 exp_acc[2] = {-1, -1}; |
844 | /* the current exponent adjust for the accumulators */ |
98994639 |
845 | I32 exponent = 0; |
8194bf88 |
846 | I32 seen_dp = 0; |
20f6aaab |
847 | I32 digit = 0; |
848 | I32 old_digit = 0; |
8194bf88 |
849 | I32 sig_digits = 0; /* noof significant digits seen so far */ |
850 | |
851 | /* There is no point in processing more significant digits |
852 | * than the NV can hold. Note that NV_DIG is a lower-bound value, |
853 | * while we need an upper-bound value. We add 2 to account for this; |
854 | * since it will have been conservative on both the first and last digit. |
855 | * For example a 32-bit mantissa with an exponent of 4 would have |
856 | * exact values in the set |
857 | * 4 |
858 | * 8 |
859 | * .. |
860 | * 17179869172 |
861 | * 17179869176 |
862 | * 17179869180 |
863 | * |
864 | * where for the purposes of calculating NV_DIG we would have to discount |
865 | * both the first and last digit, since neither can hold all values from |
866 | * 0..9; but for calculating the value we must examine those two digits. |
867 | */ |
868 | #define MAX_SIG_DIGITS (NV_DIG+2) |
869 | |
870 | /* the max number we can accumulate in a UV, and still safely do 10*N+9 */ |
871 | #define MAX_ACCUMULATE ( (UV) ((UV_MAX - 9)/10)) |
98994639 |
872 | |
96a05aee |
873 | /* leading whitespace */ |
874 | while (isSPACE(*s)) |
875 | ++s; |
876 | |
98994639 |
877 | /* sign */ |
878 | switch (*s) { |
879 | case '-': |
880 | negative = 1; |
881 | /* fall through */ |
882 | case '+': |
883 | ++s; |
884 | } |
885 | |
2b54f59f |
886 | /* punt to strtod for NaN/Inf; if no support for it there, tough luck */ |
887 | |
888 | #ifdef HAS_STRTOD |
889 | if (*s == 'n' || *s == 'N' || *s == 'i' || *s == 'I') { |
c042ae3a |
890 | const char *p = negative ? s - 1 : s; |
2b54f59f |
891 | char *endp; |
892 | NV rslt; |
893 | rslt = strtod(p, &endp); |
894 | if (endp != p) { |
895 | *value = rslt; |
896 | return (char *)endp; |
897 | } |
898 | } |
899 | #endif |
900 | |
8194bf88 |
901 | /* we accumulate digits into an integer; when this becomes too |
902 | * large, we add the total to NV and start again */ |
98994639 |
903 | |
8194bf88 |
904 | while (1) { |
905 | if (isDIGIT(*s)) { |
906 | seen_digit = 1; |
20f6aaab |
907 | old_digit = digit; |
8194bf88 |
908 | digit = *s++ - '0'; |
20f6aaab |
909 | if (seen_dp) |
910 | exp_adjust[1]++; |
98994639 |
911 | |
8194bf88 |
912 | /* don't start counting until we see the first significant |
913 | * digit, eg the 5 in 0.00005... */ |
914 | if (!sig_digits && digit == 0) |
915 | continue; |
916 | |
917 | if (++sig_digits > MAX_SIG_DIGITS) { |
98994639 |
918 | /* limits of precision reached */ |
20f6aaab |
919 | if (digit > 5) { |
920 | ++accumulator[seen_dp]; |
921 | } else if (digit == 5) { |
922 | if (old_digit % 2) { /* round to even - Allen */ |
923 | ++accumulator[seen_dp]; |
924 | } |
925 | } |
926 | if (seen_dp) { |
927 | exp_adjust[1]--; |
928 | } else { |
929 | exp_adjust[0]++; |
930 | } |
8194bf88 |
931 | /* skip remaining digits */ |
98994639 |
932 | while (isDIGIT(*s)) { |
98994639 |
933 | ++s; |
20f6aaab |
934 | if (! seen_dp) { |
935 | exp_adjust[0]++; |
936 | } |
98994639 |
937 | } |
938 | /* warn of loss of precision? */ |
98994639 |
939 | } |
8194bf88 |
940 | else { |
20f6aaab |
941 | if (accumulator[seen_dp] > MAX_ACCUMULATE) { |
8194bf88 |
942 | /* add accumulator to result and start again */ |
20f6aaab |
943 | result[seen_dp] = S_mulexp10(result[seen_dp], |
944 | exp_acc[seen_dp]) |
945 | + (NV)accumulator[seen_dp]; |
946 | accumulator[seen_dp] = 0; |
947 | exp_acc[seen_dp] = 0; |
98994639 |
948 | } |
20f6aaab |
949 | accumulator[seen_dp] = accumulator[seen_dp] * 10 + digit; |
950 | ++exp_acc[seen_dp]; |
98994639 |
951 | } |
8194bf88 |
952 | } |
e1ec3a88 |
953 | else if (!seen_dp && GROK_NUMERIC_RADIX(&s, send)) { |
8194bf88 |
954 | seen_dp = 1; |
20f6aaab |
955 | if (sig_digits > MAX_SIG_DIGITS) { |
956 | ++s; |
957 | while (isDIGIT(*s)) { |
958 | ++s; |
959 | } |
960 | break; |
961 | } |
8194bf88 |
962 | } |
963 | else { |
964 | break; |
98994639 |
965 | } |
966 | } |
967 | |
20f6aaab |
968 | result[0] = S_mulexp10(result[0], exp_acc[0]) + (NV)accumulator[0]; |
969 | if (seen_dp) { |
970 | result[1] = S_mulexp10(result[1], exp_acc[1]) + (NV)accumulator[1]; |
971 | } |
98994639 |
972 | |
8194bf88 |
973 | if (seen_digit && (*s == 'e' || *s == 'E')) { |
98994639 |
974 | bool expnegative = 0; |
975 | |
976 | ++s; |
977 | switch (*s) { |
978 | case '-': |
979 | expnegative = 1; |
980 | /* fall through */ |
981 | case '+': |
982 | ++s; |
983 | } |
984 | while (isDIGIT(*s)) |
985 | exponent = exponent * 10 + (*s++ - '0'); |
986 | if (expnegative) |
987 | exponent = -exponent; |
988 | } |
989 | |
20f6aaab |
990 | |
991 | |
98994639 |
992 | /* now apply the exponent */ |
20f6aaab |
993 | |
994 | if (seen_dp) { |
995 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]) |
996 | + S_mulexp10(result[1],exponent-exp_adjust[1]); |
997 | } else { |
998 | result[2] = S_mulexp10(result[0],exponent+exp_adjust[0]); |
999 | } |
98994639 |
1000 | |
1001 | /* now apply the sign */ |
1002 | if (negative) |
20f6aaab |
1003 | result[2] = -result[2]; |
a36244b7 |
1004 | #endif /* USE_PERL_ATOF */ |
20f6aaab |
1005 | *value = result[2]; |
73d840c0 |
1006 | return (char *)s; |
98994639 |
1007 | } |
1008 | |
55954f19 |
1009 | #if ! defined(HAS_MODFL) && defined(HAS_AINTL) && defined(HAS_COPYSIGNL) |
1010 | long double |
1011 | Perl_my_modfl(long double x, long double *ip) |
1012 | { |
1013 | *ip = aintl(x); |
1014 | return (x == *ip ? copysignl(0.0L, x) : x - *ip); |
1015 | } |
1016 | #endif |
1017 | |
1018 | #if ! defined(HAS_FREXPL) && defined(HAS_ILOGBL) && defined(HAS_SCALBNL) |
1019 | long double |
1020 | Perl_my_frexpl(long double x, int *e) { |
1021 | *e = x == 0.0L ? 0 : ilogbl(x) + 1; |
1022 | return (scalbnl(x, -*e)); |
1023 | } |
1024 | #endif |
66610fdd |
1025 | |
1026 | /* |
ed140128 |
1027 | =for apidoc Perl_signbit |
1028 | |
1029 | Return a non-zero integer if the sign bit on an NV is set, and 0 if |
1030 | it is not. |
1031 | |
1032 | If Configure detects this system has a signbit() that will work with |
1033 | our NVs, then we just use it via the #define in perl.h. Otherwise, |
1034 | fall back on this implementation. As a first pass, this gets everything |
1035 | right except -0.0. Alas, catching -0.0 is the main use for this function, |
1036 | so this is not too helpful yet. Still, at least we have the scaffolding |
1037 | in place to support other systems, should that prove useful. |
1038 | |
1039 | |
1040 | Configure notes: This function is called 'Perl_signbit' instead of a |
1041 | plain 'signbit' because it is easy to imagine a system having a signbit() |
1042 | function or macro that doesn't happen to work with our particular choice |
1043 | of NVs. We shouldn't just re-#define signbit as Perl_signbit and expect |
1044 | the standard system headers to be happy. Also, this is a no-context |
1045 | function (no pTHX_) because Perl_signbit() is usually re-#defined in |
1046 | perl.h as a simple macro call to the system's signbit(). |
1047 | Users should just always call Perl_signbit(). |
1048 | |
1049 | =cut |
1050 | */ |
1051 | #if !defined(HAS_SIGNBIT) |
1052 | int |
1053 | Perl_signbit(NV x) { |
1054 | return (x < 0.0) ? 1 : 0; |
1055 | } |
1056 | #endif |
1057 | |
1058 | /* |
66610fdd |
1059 | * Local variables: |
1060 | * c-indentation-style: bsd |
1061 | * c-basic-offset: 4 |
1062 | * indent-tabs-mode: t |
1063 | * End: |
1064 | * |
37442d52 |
1065 | * ex: set ts=8 sts=4 sw=4 noet: |
1066 | */ |