Commit | Line | Data |
5303340c |
1 | package bigrat; |
2 | require "bigint.pl"; |
a6d71656 |
3 | # |
4 | # This library is no longer being maintained, and is included for backward |
5 | # compatibility with Perl 4 programs which may require it. |
5170d013 |
6 | # This legacy library is deprecated and will be removed in a future |
7 | # release of perl. |
a6d71656 |
8 | # |
9 | # In particular, this should not be used as an example of modern Perl |
10 | # programming techniques. |
11 | # |
5303340c |
12 | # Arbitrary size rational math package |
5170d013 |
13 | |
14 | warn( "The 'bigrat.pl' legacy library is deprecated and will be" |
15 | . " removed in the next major release of perl. Please use the" |
16 | . " bigrat module instead." ); |
17 | |
bf10efe7 |
18 | # by Mark Biggar |
19 | # |
5303340c |
20 | # Input values to these routines consist of strings of the form |
21 | # m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|. |
22 | # Examples: |
23 | # "+0/1" canonical zero value |
24 | # "3" canonical value "+3/1" |
25 | # " -123/123 123" canonical value "-1/1001" |
26 | # "123 456/7890" canonical value "+20576/1315" |
27 | # Output values always include a sign and no leading zeros or |
28 | # white space. |
29 | # This package makes use of the bigint package. |
30 | # The string 'NaN' is used to represent the result when input arguments |
31 | # that are not numbers, as well as the result of dividing by zero and |
32 | # the sqrt of a negative number. |
33 | # Extreamly naive algorthims are used. |
34 | # |
35 | # Routines provided are: |
36 | # |
37 | # rneg(RAT) return RAT negation |
38 | # rabs(RAT) return RAT absolute value |
39 | # rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0) |
40 | # radd(RAT,RAT) return RAT addition |
41 | # rsub(RAT,RAT) return RAT subtraction |
42 | # rmul(RAT,RAT) return RAT multiplication |
43 | # rdiv(RAT,RAT) return RAT division |
44 | # rmod(RAT) return (RAT,RAT) integer and fractional parts |
45 | # rnorm(RAT) return RAT normalization |
46 | # rsqrt(RAT, cycles) return RAT square root |
47 | \f |
48 | # Convert a number to the canonical string form m|^[+-]\d+/\d+|. |
49 | sub main'rnorm { #(string) return rat_num |
50 | local($_) = @_; |
51 | s/\s+//g; |
52 | if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) { |
53 | &norm($1, $3 ? $3 : '+1'); |
54 | } else { |
55 | 'NaN'; |
56 | } |
57 | } |
58 | |
59 | # Normalize by reducing to lowest terms |
60 | sub norm { #(bint, bint) return rat_num |
61 | local($num,$dom) = @_; |
62 | if ($num eq 'NaN') { |
63 | 'NaN'; |
64 | } elsif ($dom eq 'NaN') { |
65 | 'NaN'; |
66 | } elsif ($dom =~ /^[+-]?0+$/) { |
67 | 'NaN'; |
68 | } else { |
69 | local($gcd) = &'bgcd($num,$dom); |
748a9306 |
70 | $gcd =~ s/^-/+/; |
5303340c |
71 | if ($gcd ne '+1') { |
72 | $num = &'bdiv($num,$gcd); |
73 | $dom = &'bdiv($dom,$gcd); |
74 | } else { |
75 | $num = &'bnorm($num); |
76 | $dom = &'bnorm($dom); |
77 | } |
79072805 |
78 | substr($dom,$[,1) = ''; |
5303340c |
79 | "$num/$dom"; |
80 | } |
81 | } |
82 | |
83 | # negation |
84 | sub main'rneg { #(rat_num) return rat_num |
79072805 |
85 | local($_) = &'rnorm(@_); |
5303340c |
86 | tr/-+/+-/ if ($_ ne '+0/1'); |
87 | $_; |
88 | } |
89 | |
90 | # absolute value |
91 | sub main'rabs { #(rat_num) return $rat_num |
79072805 |
92 | local($_) = &'rnorm(@_); |
93 | substr($_,$[,1) = '+' unless $_ eq 'NaN'; |
5303340c |
94 | $_; |
95 | } |
96 | |
97 | # multipication |
98 | sub main'rmul { #(rat_num, rat_num) return rat_num |
79072805 |
99 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
100 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
101 | &norm(&'bmul($xn,$yn),&'bmul($xd,$yd)); |
102 | } |
103 | |
104 | # division |
105 | sub main'rdiv { #(rat_num, rat_num) return rat_num |
79072805 |
106 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
107 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
108 | &norm(&'bmul($xn,$yd),&'bmul($xd,$yn)); |
109 | } |
110 | \f |
111 | # addition |
112 | sub main'radd { #(rat_num, rat_num) return rat_num |
79072805 |
113 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
114 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
115 | &norm(&'badd(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd)); |
116 | } |
117 | |
118 | # subtraction |
119 | sub main'rsub { #(rat_num, rat_num) return rat_num |
79072805 |
120 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
121 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
122 | &norm(&'bsub(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd)); |
123 | } |
124 | |
125 | # comparison |
126 | sub main'rcmp { #(rat_num, rat_num) return cond_code |
79072805 |
127 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
128 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
129 | &bigint'cmp(&'bmul($xn,$yd),&'bmul($yn,$xd)); |
130 | } |
131 | |
132 | # int and frac parts |
133 | sub main'rmod { #(rat_num) return (rat_num,rat_num) |
79072805 |
134 | local($xn,$xd) = split('/',&'rnorm(@_)); |
5303340c |
135 | local($i,$f) = &'bdiv($xn,$xd); |
136 | if (wantarray) { |
137 | ("$i/1", "$f/$xd"); |
138 | } else { |
139 | "$i/1"; |
140 | } |
141 | } |
142 | |
143 | # square root by Newtons method. |
144 | # cycles specifies the number of iterations default: 5 |
145 | sub main'rsqrt { #(fnum_str[, cycles]) return fnum_str |
79072805 |
146 | local($x, $scale) = (&'rnorm($_[$[]), $_[$[+1]); |
5303340c |
147 | if ($x eq 'NaN') { |
148 | 'NaN'; |
149 | } elsif ($x =~ /^-/) { |
150 | 'NaN'; |
151 | } else { |
152 | local($gscale, $guess) = (0, '+1/1'); |
153 | $scale = 5 if (!$scale); |
154 | while ($gscale++ < $scale) { |
155 | $guess = &'rmul(&'radd($guess,&'rdiv($x,$guess)),"+1/2"); |
156 | } |
157 | "$guess"; # quotes necessary due to perl bug |
158 | } |
159 | } |
160 | |
161 | 1; |