Commit | Line | Data |
5303340c |
1 | package bigrat; |
2 | require "bigint.pl"; |
a6d71656 |
3 | # |
4 | # This library is no longer being maintained, and is included for backward |
5 | # compatibility with Perl 4 programs which may require it. |
6 | # |
7 | # In particular, this should not be used as an example of modern Perl |
8 | # programming techniques. |
9 | # |
5303340c |
10 | # Arbitrary size rational math package |
11 | # |
bf10efe7 |
12 | # by Mark Biggar |
13 | # |
5303340c |
14 | # Input values to these routines consist of strings of the form |
15 | # m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|. |
16 | # Examples: |
17 | # "+0/1" canonical zero value |
18 | # "3" canonical value "+3/1" |
19 | # " -123/123 123" canonical value "-1/1001" |
20 | # "123 456/7890" canonical value "+20576/1315" |
21 | # Output values always include a sign and no leading zeros or |
22 | # white space. |
23 | # This package makes use of the bigint package. |
24 | # The string 'NaN' is used to represent the result when input arguments |
25 | # that are not numbers, as well as the result of dividing by zero and |
26 | # the sqrt of a negative number. |
27 | # Extreamly naive algorthims are used. |
28 | # |
29 | # Routines provided are: |
30 | # |
31 | # rneg(RAT) return RAT negation |
32 | # rabs(RAT) return RAT absolute value |
33 | # rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0) |
34 | # radd(RAT,RAT) return RAT addition |
35 | # rsub(RAT,RAT) return RAT subtraction |
36 | # rmul(RAT,RAT) return RAT multiplication |
37 | # rdiv(RAT,RAT) return RAT division |
38 | # rmod(RAT) return (RAT,RAT) integer and fractional parts |
39 | # rnorm(RAT) return RAT normalization |
40 | # rsqrt(RAT, cycles) return RAT square root |
41 | \f |
42 | # Convert a number to the canonical string form m|^[+-]\d+/\d+|. |
43 | sub main'rnorm { #(string) return rat_num |
44 | local($_) = @_; |
45 | s/\s+//g; |
46 | if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) { |
47 | &norm($1, $3 ? $3 : '+1'); |
48 | } else { |
49 | 'NaN'; |
50 | } |
51 | } |
52 | |
53 | # Normalize by reducing to lowest terms |
54 | sub norm { #(bint, bint) return rat_num |
55 | local($num,$dom) = @_; |
56 | if ($num eq 'NaN') { |
57 | 'NaN'; |
58 | } elsif ($dom eq 'NaN') { |
59 | 'NaN'; |
60 | } elsif ($dom =~ /^[+-]?0+$/) { |
61 | 'NaN'; |
62 | } else { |
63 | local($gcd) = &'bgcd($num,$dom); |
748a9306 |
64 | $gcd =~ s/^-/+/; |
5303340c |
65 | if ($gcd ne '+1') { |
66 | $num = &'bdiv($num,$gcd); |
67 | $dom = &'bdiv($dom,$gcd); |
68 | } else { |
69 | $num = &'bnorm($num); |
70 | $dom = &'bnorm($dom); |
71 | } |
79072805 |
72 | substr($dom,$[,1) = ''; |
5303340c |
73 | "$num/$dom"; |
74 | } |
75 | } |
76 | |
77 | # negation |
78 | sub main'rneg { #(rat_num) return rat_num |
79072805 |
79 | local($_) = &'rnorm(@_); |
5303340c |
80 | tr/-+/+-/ if ($_ ne '+0/1'); |
81 | $_; |
82 | } |
83 | |
84 | # absolute value |
85 | sub main'rabs { #(rat_num) return $rat_num |
79072805 |
86 | local($_) = &'rnorm(@_); |
87 | substr($_,$[,1) = '+' unless $_ eq 'NaN'; |
5303340c |
88 | $_; |
89 | } |
90 | |
91 | # multipication |
92 | sub main'rmul { #(rat_num, rat_num) return rat_num |
79072805 |
93 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
94 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
95 | &norm(&'bmul($xn,$yn),&'bmul($xd,$yd)); |
96 | } |
97 | |
98 | # division |
99 | sub main'rdiv { #(rat_num, rat_num) return rat_num |
79072805 |
100 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
101 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
102 | &norm(&'bmul($xn,$yd),&'bmul($xd,$yn)); |
103 | } |
104 | \f |
105 | # addition |
106 | sub main'radd { #(rat_num, rat_num) return rat_num |
79072805 |
107 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
108 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
109 | &norm(&'badd(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd)); |
110 | } |
111 | |
112 | # subtraction |
113 | sub main'rsub { #(rat_num, rat_num) return rat_num |
79072805 |
114 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
115 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
116 | &norm(&'bsub(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd)); |
117 | } |
118 | |
119 | # comparison |
120 | sub main'rcmp { #(rat_num, rat_num) return cond_code |
79072805 |
121 | local($xn,$xd) = split('/',&'rnorm($_[$[])); |
122 | local($yn,$yd) = split('/',&'rnorm($_[$[+1])); |
5303340c |
123 | &bigint'cmp(&'bmul($xn,$yd),&'bmul($yn,$xd)); |
124 | } |
125 | |
126 | # int and frac parts |
127 | sub main'rmod { #(rat_num) return (rat_num,rat_num) |
79072805 |
128 | local($xn,$xd) = split('/',&'rnorm(@_)); |
5303340c |
129 | local($i,$f) = &'bdiv($xn,$xd); |
130 | if (wantarray) { |
131 | ("$i/1", "$f/$xd"); |
132 | } else { |
133 | "$i/1"; |
134 | } |
135 | } |
136 | |
137 | # square root by Newtons method. |
138 | # cycles specifies the number of iterations default: 5 |
139 | sub main'rsqrt { #(fnum_str[, cycles]) return fnum_str |
79072805 |
140 | local($x, $scale) = (&'rnorm($_[$[]), $_[$[+1]); |
5303340c |
141 | if ($x eq 'NaN') { |
142 | 'NaN'; |
143 | } elsif ($x =~ /^-/) { |
144 | 'NaN'; |
145 | } else { |
146 | local($gscale, $guess) = (0, '+1/1'); |
147 | $scale = 5 if (!$scale); |
148 | while ($gscale++ < $scale) { |
149 | $guess = &'rmul(&'radd($guess,&'rdiv($x,$guess)),"+1/2"); |
150 | } |
151 | "$guess"; # quotes necessary due to perl bug |
152 | } |
153 | } |
154 | |
155 | 1; |