Typo fix : caller:: isn't caller
[p5sagit/p5-mst-13.2.git] / lib / bigfloat.pl
CommitLineData
5303340c 1package bigfloat;
2require "bigint.pl";
a6d71656 3#
4# This library is no longer being maintained, and is included for backward
5# compatibility with Perl 4 programs which may require it.
8e1a0ca7 6# This legacy library is deprecated and will be removed in a future
7# release of perl.
a6d71656 8#
9# In particular, this should not be used as an example of modern Perl
10# programming techniques.
11#
12# Suggested alternative: Math::BigFloat
8e1a0ca7 13
14warn( "The 'bigfloat.pl' legacy library is deprecated and will be"
15 . " removed in the next major release of perl. Please use the"
16 . " Math::BigFloat module instead." );
17
5303340c 18# Arbitrary length float math package
19#
68decaef 20# by Mark Biggar
21#
5303340c 22# number format
23# canonical strings have the form /[+-]\d+E[+-]\d+/
5d7098d5 24# Input values can have embedded whitespace
5303340c 25# Error returns
26# 'NaN' An input parameter was "Not a Number" or
27# divide by zero or sqrt of negative number
28# Division is computed to
79072805 29# max($div_scale,length(dividend)+length(divisor))
5303340c 30# digits by default.
31# Also used for default sqrt scale
32
33$div_scale = 40;
34
35# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
36
37$rnd_mode = 'even';
38
39# bigfloat routines
40#
41# fadd(NSTR, NSTR) return NSTR addition
42# fsub(NSTR, NSTR) return NSTR subtraction
43# fmul(NSTR, NSTR) return NSTR multiplication
44# fdiv(NSTR, NSTR[,SCALE]) returns NSTR division to SCALE places
45# fneg(NSTR) return NSTR negation
46# fabs(NSTR) return NSTR absolute value
47# fcmp(NSTR,NSTR) return CODE compare undef,<0,=0,>0
48# fround(NSTR, SCALE) return NSTR round to SCALE digits
49# ffround(NSTR, SCALE) return NSTR round at SCALEth place
50# fnorm(NSTR) return (NSTR) normalize
51# fsqrt(NSTR[, SCALE]) return NSTR sqrt to SCALE places
52\f
53# Convert a number to canonical string form.
54# Takes something that looks like a number and converts it to
55# the form /^[+-]\d+E[+-]\d+$/.
56sub main'fnorm { #(string) return fnum_str
57 local($_) = @_;
58 s/\s+//g; # strip white space
afea815c 59 if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/
60 && ($2 ne '' || defined($4))) {
61 my $x = defined($4) ? $4 : '';
62 &norm(($1 ? "$1$2$x" : "+$2$x"), (($x ne '') ? $6-length($x) : $6));
5303340c 63 } else {
64 'NaN';
65 }
66}
67
68# normalize number -- for internal use
69sub norm { #(mantissa, exponent) return fnum_str
70 local($_, $exp) = @_;
71 if ($_ eq 'NaN') {
72 'NaN';
73 } else {
74 s/^([+-])0+/$1/; # strip leading zeros
75 if (length($_) == 1) {
76 '+0E+0';
77 } else {
78 $exp += length($1) if (s/(0+)$//); # strip trailing zeros
79 sprintf("%sE%+ld", $_, $exp);
80 }
81 }
82}
83
84# negation
85sub main'fneg { #(fnum_str) return fnum_str
79072805 86 local($_) = &'fnorm($_[$[]);
e334a159 87 vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign
f70c35af 88 if ( ord("\t") == 9 ) { # ascii
89 s/^H/N/;
90 }
91 else { # ebcdic character set
92 s/\373/N/;
93 }
5303340c 94 $_;
95}
96
97# absolute value
98sub main'fabs { #(fnum_str) return fnum_str
79072805 99 local($_) = &'fnorm($_[$[]);
68decaef 100 s/^-/+/; # mash sign
5303340c 101 $_;
102}
103
104# multiplication
105sub main'fmul { #(fnum_str, fnum_str) return fnum_str
79072805 106 local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
5303340c 107 if ($x eq 'NaN' || $y eq 'NaN') {
108 'NaN';
109 } else {
110 local($xm,$xe) = split('E',$x);
111 local($ym,$ye) = split('E',$y);
112 &norm(&'bmul($xm,$ym),$xe+$ye);
113 }
114}
115\f
116# addition
117sub main'fadd { #(fnum_str, fnum_str) return fnum_str
79072805 118 local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
5303340c 119 if ($x eq 'NaN' || $y eq 'NaN') {
120 'NaN';
121 } else {
122 local($xm,$xe) = split('E',$x);
123 local($ym,$ye) = split('E',$y);
124 ($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye);
125 &norm(&'badd($ym,$xm.('0' x ($xe-$ye))),$ye);
126 }
127}
128
129# subtraction
130sub main'fsub { #(fnum_str, fnum_str) return fnum_str
79072805 131 &'fadd($_[$[],&'fneg($_[$[+1]));
5303340c 132}
133
134# division
135# args are dividend, divisor, scale (optional)
136# result has at most max(scale, length(dividend), length(divisor)) digits
137sub main'fdiv #(fnum_str, fnum_str[,scale]) return fnum_str
138{
79072805 139 local($x,$y,$scale) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]),$_[$[+2]);
5303340c 140 if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') {
141 'NaN';
142 } else {
143 local($xm,$xe) = split('E',$x);
144 local($ym,$ye) = split('E',$y);
145 $scale = $div_scale if (!$scale);
146 $scale = length($xm)-1 if (length($xm)-1 > $scale);
147 $scale = length($ym)-1 if (length($ym)-1 > $scale);
148 $scale = $scale + length($ym) - length($xm);
5d7098d5 149 &norm(&round(&'bdiv($xm.('0' x $scale),$ym),&'babs($ym)),
5303340c 150 $xe-$ye-$scale);
151 }
152}
153\f
154# round int $q based on fraction $r/$base using $rnd_mode
155sub round { #(int_str, int_str, int_str) return int_str
156 local($q,$r,$base) = @_;
157 if ($q eq 'NaN' || $r eq 'NaN') {
158 'NaN';
159 } elsif ($rnd_mode eq 'trunc') {
160 $q; # just truncate
161 } else {
162 local($cmp) = &'bcmp(&'bmul($r,'+2'),$base);
163 if ( $cmp < 0 ||
164 ($cmp == 0 &&
165 ( $rnd_mode eq 'zero' ||
79072805 166 ($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) ||
167 ($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) ||
5303340c 168 ($rnd_mode eq 'even' && $q =~ /[24680]$/) ||
169 ($rnd_mode eq 'odd' && $q =~ /[13579]$/) )) ) {
170 $q; # round down
171 } else {
79072805 172 &'badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1'));
5303340c 173 # round up
174 }
175 }
176}
177
178# round the mantissa of $x to $scale digits
179sub main'fround { #(fnum_str, scale) return fnum_str
79072805 180 local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
5303340c 181 if ($x eq 'NaN' || $scale <= 0) {
182 $x;
183 } else {
184 local($xm,$xe) = split('E',$x);
185 if (length($xm)-1 <= $scale) {
186 $x;
187 } else {
79072805 188 &norm(&round(substr($xm,$[,$scale+1),
189 "+0".substr($xm,$[+$scale+1,1),"+10"),
5303340c 190 $xe+length($xm)-$scale-1);
191 }
192 }
193}
194\f
195# round $x at the 10 to the $scale digit place
196sub main'ffround { #(fnum_str, scale) return fnum_str
79072805 197 local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
5303340c 198 if ($x eq 'NaN') {
199 'NaN';
200 } else {
201 local($xm,$xe) = split('E',$x);
202 if ($xe >= $scale) {
203 $x;
204 } else {
205 $xe = length($xm)+$xe-$scale;
206 if ($xe < 1) {
207 '+0E+0';
208 } elsif ($xe == 1) {
5d7098d5 209 # The first substr preserves the sign, which means that
210 # we'll pass a non-normalized "-0" to &round when rounding
211 # -0.006 (for example), purely so that &round won't lose
212 # the sign.
213 &norm(&round(substr($xm,$[,1).'0',
214 "+0".substr($xm,$[+1,1),"+10"), $scale);
5303340c 215 } else {
79072805 216 &norm(&round(substr($xm,$[,$xe),
217 "+0".substr($xm,$[+$xe,1),"+10"), $scale);
5303340c 218 }
219 }
220 }
221}
222
223# compare 2 values returns one of undef, <0, =0, >0
224# returns undef if either or both input value are not numbers
225sub main'fcmp #(fnum_str, fnum_str) return cond_code
226{
79072805 227 local($x, $y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
5303340c 228 if ($x eq "NaN" || $y eq "NaN") {
229 undef;
5303340c 230 } else {
68decaef 231 ord($y) <=> ord($x)
232 ||
233 ( local($xm,$xe,$ym,$ye) = split('E', $x."E$y"),
79072805 234 (($xe <=> $ye) * (substr($x,$[,1).'1')
68decaef 235 || &bigint'cmp($xm,$ym))
236 );
5303340c 237 }
238}
239\f
240# square root by Newtons method.
241sub main'fsqrt { #(fnum_str[, scale]) return fnum_str
79072805 242 local($x, $scale) = (&'fnorm($_[$[]), $_[$[+1]);
5303340c 243 if ($x eq 'NaN' || $x =~ /^-/) {
244 'NaN';
245 } elsif ($x eq '+0E+0') {
246 '+0E+0';
247 } else {
248 local($xm, $xe) = split('E',$x);
249 $scale = $div_scale if (!$scale);
250 $scale = length($xm)-1 if ($scale < length($xm)-1);
251 local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2));
252 while ($gs < 2*$scale) {
253 $guess = &'fmul(&'fadd($guess,&'fdiv($x,$guess,$gs*2)),".5");
254 $gs *= 2;
255 }
256 &'fround($guess, $scale);
257 }
258}
259
2601;