Re-instate all the warnings checks that don't work on Win32, but with
[p5sagit/p5-mst-13.2.git] / lib / Math / Complex.pm
CommitLineData
66730be0 1#
2# Complex numbers and associated mathematical functions
b42d0ec9 3# -- Raphael Manfredi Since Sep 1996
4# -- Jarkko Hietaniemi Since Mar 1997
5# -- Daniel S. Lewart Since Sep 1997
fb73857a 6#
a0d0e21e 7
5aabfad6 8package Math::Complex;
a0d0e21e 9
f1e71051 10use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf $ExpInf);
9fbe1b12 11
f1e71051 12$VERSION = 1.54;
8b4fe368 13
14use Config;
476757f7 15
9fbe1b12 16BEGIN {
8b4fe368 17 my %DBL_MAX =
18 (
19 4 => '1.70141183460469229e+38',
20 8 => '1.7976931348623157e+308',
57dd0abb 21 # AFAICT the 10, 12, and 16-byte long doubles
22 # all have the same maximum.
8b4fe368 23 10 => '1.1897314953572317650857593266280070162E+4932',
57dd0abb 24 12 => '1.1897314953572317650857593266280070162E+4932',
d3056722 25 16 => '1.1897314953572317650857593266280070162E+4932',
8b4fe368 26 );
57dd0abb 27 my $nvsize = $Config{nvsize} ||
28 ($Config{uselongdouble} && $Config{longdblsize}) ||
29 $Config{doublesize};
30 die "Math::Complex: Could not figure out nvsize\n"
31 unless defined $nvsize;
32 die "Math::Complex: Cannot not figure out max nv (nvsize = $nvsize)\n"
33 unless defined $DBL_MAX{$nvsize};
8b4fe368 34 my $DBL_MAX = eval $DBL_MAX{$nvsize};
57dd0abb 35 die "Math::Complex: Could not figure out max nv (nvsize = $nvsize)\n"
36 unless defined $DBL_MAX;
8b4fe368 37 my $BIGGER_THAN_THIS = 1e30; # Must find something bigger than this.
1515bec6 38 if ($^O eq 'unicosmk') {
8b4fe368 39 $Inf = $DBL_MAX;
1515bec6 40 } else {
f1e71051 41 local $SIG{FPE} = { };
618e05e9 42 local $!;
8b4fe368 43 # We do want an arithmetic overflow, Inf INF inf Infinity.
1515bec6 44 for my $t (
8b4fe368 45 'exp(99999)', # Enough even with 128-bit long doubles.
1515bec6 46 'inf',
47 'Inf',
48 'INF',
49 'infinity',
50 'Infinity',
51 'INFINITY',
8b4fe368 52 '1e99999',
1515bec6 53 ) {
1515bec6 54 local $^W = 0;
55 my $i = eval "$t+1.0";
9f4452f7 56 if (defined $i && $i > $BIGGER_THAN_THIS) {
1515bec6 57 $Inf = $i;
58 last;
59 }
830ec763 60 }
8b4fe368 61 $Inf = $DBL_MAX unless defined $Inf; # Oh well, close enough.
62 die "Math::Complex: Could not get Infinity"
63 unless $Inf > $BIGGER_THAN_THIS;
f1e71051 64 $ExpInf = exp(99999);
ffb4440d 65 }
9f4452f7 66 # print "# On this machine, Inf = '$Inf'\n";
9fbe1b12 67}
fb73857a 68
9fbe1b12 69use strict;
fb73857a 70
9fbe1b12 71my $i;
72my %LOGN;
0c721ce2 73
91cb744f 74# Regular expression for floating point numbers.
bf5f1b4c 75# These days we could use Scalar::Util::lln(), I guess.
76my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
91cb744f 77
9fbe1b12 78require Exporter;
0c721ce2 79
5aabfad6 80@ISA = qw(Exporter);
81
5aabfad6 82my @trig = qw(
83 pi
fb73857a 84 tan
5aabfad6 85 csc cosec sec cot cotan
86 asin acos atan
87 acsc acosec asec acot acotan
88 sinh cosh tanh
89 csch cosech sech coth cotanh
90 asinh acosh atanh
91 acsch acosech asech acoth acotanh
92 );
93
94@EXPORT = (qw(
b42d0ec9 95 i Re Im rho theta arg
fb73857a 96 sqrt log ln
5aabfad6 97 log10 logn cbrt root
98 cplx cplxe
bf5f1b4c 99 atan2
5aabfad6 100 ),
101 @trig);
102
1515bec6 103my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
affad850 104
105@EXPORT_OK = @pi;
bf5f1b4c 106
5aabfad6 107%EXPORT_TAGS = (
108 'trig' => [@trig],
affad850 109 'pi' => [@pi],
66730be0 110);
a0d0e21e 111
a5f75d66 112use overload
affad850 113 '+' => \&_plus,
114 '-' => \&_minus,
115 '*' => \&_multiply,
116 '/' => \&_divide,
117 '**' => \&_power,
118 '==' => \&_numeq,
119 '<=>' => \&_spaceship,
120 'neg' => \&_negate,
121 '~' => \&_conjugate,
66730be0 122 'abs' => \&abs,
123 'sqrt' => \&sqrt,
124 'exp' => \&exp,
125 'log' => \&log,
126 'sin' => \&sin,
127 'cos' => \&cos,
0c721ce2 128 'tan' => \&tan,
66730be0 129 'atan2' => \&atan2,
affad850 130 '""' => \&_stringify;
66730be0 131
132#
b42d0ec9 133# Package "privates"
66730be0 134#
135
16357284 136my %DISPLAY_FORMAT = ('style' => 'cartesian',
137 'polar_pretty_print' => 1);
138my $eps = 1e-14; # Epsilon
66730be0 139
140#
141# Object attributes (internal):
142# cartesian [real, imaginary] -- cartesian form
143# polar [rho, theta] -- polar form
144# c_dirty cartesian form not up-to-date
145# p_dirty polar form not up-to-date
146# display display format (package's global when not set)
147#
148
b42d0ec9 149# Die on bad *make() arguments.
150
151sub _cannot_make {
bf5f1b4c 152 die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
b42d0ec9 153}
154
bf5f1b4c 155sub _make {
91cb744f 156 my $arg = shift;
bf5f1b4c 157 my ($p, $q);
91cb744f 158
bf5f1b4c 159 if ($arg =~ /^$gre$/) {
160 ($p, $q) = ($1, 0);
161 } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
91cb744f 162 ($p, $q) = ($1 || 0, $2);
bf5f1b4c 163 } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
91cb744f 164 ($p, $q) = ($1, $2 || 0);
91cb744f 165 }
166
bf5f1b4c 167 if (defined $p) {
91cb744f 168 $p =~ s/^\+//;
bf5f1b4c 169 $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
91cb744f 170 $q =~ s/^\+//;
bf5f1b4c 171 $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
91cb744f 172 }
173
bf5f1b4c 174 return ($p, $q);
175}
176
177sub _emake {
178 my $arg = shift;
179 my ($p, $q);
180
181 if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
182 ($p, $q) = ($1, $2 || 0);
183 } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
184 ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
185 } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
186 ($p, $q) = ($1, 0);
187 } elsif ($arg =~ /^\s*$gre\s*$/) {
188 ($p, $q) = ($1, 0);
189 }
190
191 if (defined $p) {
192 $p =~ s/^\+//;
193 $q =~ s/^\+//;
194 $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
195 $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
196 }
197
198 return ($p, $q);
91cb744f 199}
200
66730be0 201#
202# ->make
203#
204# Create a new complex number (cartesian form)
205#
206sub make {
bf5f1b4c 207 my $self = bless {}, shift;
208 my ($re, $im);
209 if (@_ == 0) {
210 ($re, $im) = (0, 0);
211 } elsif (@_ == 1) {
212 return (ref $self)->emake($_[0])
213 if ($_[0] =~ /^\s*\[/);
214 ($re, $im) = _make($_[0]);
215 } elsif (@_ == 2) {
216 ($re, $im) = @_;
217 }
218 if (defined $re) {
91cb744f 219 _cannot_make("real part", $re) unless $re =~ /^$gre$/;
bf5f1b4c 220 }
221 $im ||= 0;
222 _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
affad850 223 $self->_set_cartesian([$re, $im ]);
bf5f1b4c 224 $self->display_format('cartesian');
225
226 return $self;
66730be0 227}
228
229#
230# ->emake
231#
232# Create a new complex number (exponential form)
233#
234sub emake {
bf5f1b4c 235 my $self = bless {}, shift;
236 my ($rho, $theta);
237 if (@_ == 0) {
238 ($rho, $theta) = (0, 0);
239 } elsif (@_ == 1) {
240 return (ref $self)->make($_[0])
241 if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
242 ($rho, $theta) = _emake($_[0]);
243 } elsif (@_ == 2) {
244 ($rho, $theta) = @_;
245 }
246 if (defined $rho && defined $theta) {
fb73857a 247 if ($rho < 0) {
248 $rho = -$rho;
249 $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
250 }
bf5f1b4c 251 }
252 if (defined $rho) {
91cb744f 253 _cannot_make("rho", $rho) unless $rho =~ /^$gre$/;
bf5f1b4c 254 }
255 $theta ||= 0;
256 _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
affad850 257 $self->_set_polar([$rho, $theta]);
bf5f1b4c 258 $self->display_format('polar');
259
260 return $self;
66730be0 261}
262
263sub new { &make } # For backward compatibility only.
264
265#
266# cplx
267#
268# Creates a complex number from a (re, im) tuple.
269# This avoids the burden of writing Math::Complex->make(re, im).
270#
271sub cplx {
91cb744f 272 return __PACKAGE__->make(@_);
66730be0 273}
274
275#
276# cplxe
277#
278# Creates a complex number from a (rho, theta) tuple.
279# This avoids the burden of writing Math::Complex->emake(rho, theta).
280#
281sub cplxe {
91cb744f 282 return __PACKAGE__->emake(@_);
66730be0 283}
284
285#
286# pi
287#
fb73857a 288# The number defined as pi = 180 degrees
66730be0 289#
6570f784 290sub pi () { 4 * CORE::atan2(1, 1) }
5cd24f17 291
292#
affad850 293# pi2
5cd24f17 294#
fb73857a 295# The full circle
296#
affad850 297sub pi2 () { 2 * pi }
298
299#
300# pi4
301#
302# The full circle twice.
303#
304sub pi4 () { 4 * pi }
fb73857a 305
5cd24f17 306#
fb73857a 307# pip2
308#
309# The quarter circle
310#
6570f784 311sub pip2 () { pi / 2 }
5cd24f17 312
fb73857a 313#
affad850 314# pip4
d09ae4e6 315#
affad850 316# The eighth circle.
d09ae4e6 317#
affad850 318sub pip4 () { pi / 4 }
d09ae4e6 319
320#
affad850 321# _uplog10
fb73857a 322#
323# Used in log10().
324#
affad850 325sub _uplog10 () { 1 / CORE::log(10) }
66730be0 326
327#
328# i
329#
330# The number defined as i*i = -1;
331#
332sub i () {
5cd24f17 333 return $i if ($i);
334 $i = bless {};
40da2db3 335 $i->{'cartesian'} = [0, 1];
fb73857a 336 $i->{'polar'} = [1, pip2];
66730be0 337 $i->{c_dirty} = 0;
338 $i->{p_dirty} = 0;
339 return $i;
340}
341
342#
affad850 343# _ip2
1fa12f56 344#
345# Half of i.
346#
affad850 347sub _ip2 () { i / 2 }
1fa12f56 348
349#
66730be0 350# Attribute access/set routines
351#
352
affad850 353sub _cartesian {$_[0]->{c_dirty} ?
354 $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
355sub _polar {$_[0]->{p_dirty} ?
356 $_[0]->_update_polar : $_[0]->{'polar'}}
66730be0 357
affad850 358sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
359 $_[0]->{'cartesian'} = $_[1] }
360sub _set_polar { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
361 $_[0]->{'polar'} = $_[1] }
66730be0 362
363#
affad850 364# ->_update_cartesian
66730be0 365#
366# Recompute and return the cartesian form, given accurate polar form.
367#
affad850 368sub _update_cartesian {
66730be0 369 my $self = shift;
40da2db3 370 my ($r, $t) = @{$self->{'polar'}};
66730be0 371 $self->{c_dirty} = 0;
a8693bd3 372 return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
66730be0 373}
374
375#
376#
affad850 377# ->_update_polar
66730be0 378#
379# Recompute and return the polar form, given accurate cartesian form.
380#
affad850 381sub _update_polar {
66730be0 382 my $self = shift;
40da2db3 383 my ($x, $y) = @{$self->{'cartesian'}};
66730be0 384 $self->{p_dirty} = 0;
40da2db3 385 return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
1fa12f56 386 return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
387 CORE::atan2($y, $x)];
66730be0 388}
389
390#
affad850 391# (_plus)
66730be0 392#
393# Computes z1+z2.
394#
affad850 395sub _plus {
66730be0 396 my ($z1, $z2, $regular) = @_;
affad850 397 my ($re1, $im1) = @{$z1->_cartesian};
0e505df1 398 $z2 = cplx($z2) unless ref $z2;
affad850 399 my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
66730be0 400 unless (defined $regular) {
affad850 401 $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
66730be0 402 return $z1;
403 }
404 return (ref $z1)->make($re1 + $re2, $im1 + $im2);
405}
406
407#
affad850 408# (_minus)
66730be0 409#
410# Computes z1-z2.
411#
affad850 412sub _minus {
66730be0 413 my ($z1, $z2, $inverted) = @_;
affad850 414 my ($re1, $im1) = @{$z1->_cartesian};
0e505df1 415 $z2 = cplx($z2) unless ref $z2;
affad850 416 my ($re2, $im2) = @{$z2->_cartesian};
66730be0 417 unless (defined $inverted) {
affad850 418 $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
66730be0 419 return $z1;
420 }
421 return $inverted ?
422 (ref $z1)->make($re2 - $re1, $im2 - $im1) :
423 (ref $z1)->make($re1 - $re2, $im1 - $im2);
0e505df1 424
66730be0 425}
426
427#
affad850 428# (_multiply)
66730be0 429#
430# Computes z1*z2.
431#
affad850 432sub _multiply {
fb73857a 433 my ($z1, $z2, $regular) = @_;
434 if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
435 # if both polar better use polar to avoid rounding errors
affad850 436 my ($r1, $t1) = @{$z1->_polar};
437 my ($r2, $t2) = @{$z2->_polar};
fb73857a 438 my $t = $t1 + $t2;
affad850 439 if ($t > pi()) { $t -= pi2 }
440 elsif ($t <= -pi()) { $t += pi2 }
fb73857a 441 unless (defined $regular) {
affad850 442 $z1->_set_polar([$r1 * $r2, $t]);
66730be0 443 return $z1;
fb73857a 444 }
445 return (ref $z1)->emake($r1 * $r2, $t);
446 } else {
affad850 447 my ($x1, $y1) = @{$z1->_cartesian};
fb73857a 448 if (ref $z2) {
affad850 449 my ($x2, $y2) = @{$z2->_cartesian};
fb73857a 450 return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
451 } else {
452 return (ref $z1)->make($x1*$z2, $y1*$z2);
453 }
66730be0 454 }
66730be0 455}
456
457#
0e505df1 458# _divbyzero
0c721ce2 459#
460# Die on division by zero.
461#
0e505df1 462sub _divbyzero {
5cd24f17 463 my $mess = "$_[0]: Division by zero.\n";
464
465 if (defined $_[1]) {
466 $mess .= "(Because in the definition of $_[0], the divisor ";
1fa12f56 467 $mess .= "$_[1] " unless ("$_[1]" eq '0');
5cd24f17 468 $mess .= "is 0)\n";
469 }
470
0c721ce2 471 my @up = caller(1);
fb73857a 472
5cd24f17 473 $mess .= "Died at $up[1] line $up[2].\n";
474
475 die $mess;
0c721ce2 476}
477
478#
affad850 479# (_divide)
66730be0 480#
481# Computes z1/z2.
482#
affad850 483sub _divide {
66730be0 484 my ($z1, $z2, $inverted) = @_;
fb73857a 485 if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
486 # if both polar better use polar to avoid rounding errors
affad850 487 my ($r1, $t1) = @{$z1->_polar};
488 my ($r2, $t2) = @{$z2->_polar};
fb73857a 489 my $t;
490 if ($inverted) {
0e505df1 491 _divbyzero "$z2/0" if ($r1 == 0);
fb73857a 492 $t = $t2 - $t1;
affad850 493 if ($t > pi()) { $t -= pi2 }
494 elsif ($t <= -pi()) { $t += pi2 }
fb73857a 495 return (ref $z1)->emake($r2 / $r1, $t);
496 } else {
0e505df1 497 _divbyzero "$z1/0" if ($r2 == 0);
fb73857a 498 $t = $t1 - $t2;
affad850 499 if ($t > pi()) { $t -= pi2 }
500 elsif ($t <= -pi()) { $t += pi2 }
fb73857a 501 return (ref $z1)->emake($r1 / $r2, $t);
502 }
503 } else {
504 my ($d, $x2, $y2);
505 if ($inverted) {
affad850 506 ($x2, $y2) = @{$z1->_cartesian};
fb73857a 507 $d = $x2*$x2 + $y2*$y2;
508 _divbyzero "$z2/0" if $d == 0;
509 return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
510 } else {
affad850 511 my ($x1, $y1) = @{$z1->_cartesian};
fb73857a 512 if (ref $z2) {
affad850 513 ($x2, $y2) = @{$z2->_cartesian};
fb73857a 514 $d = $x2*$x2 + $y2*$y2;
515 _divbyzero "$z1/0" if $d == 0;
516 my $u = ($x1*$x2 + $y1*$y2)/$d;
517 my $v = ($y1*$x2 - $x1*$y2)/$d;
518 return (ref $z1)->make($u, $v);
519 } else {
520 _divbyzero "$z1/0" if $z2 == 0;
521 return (ref $z1)->make($x1/$z2, $y1/$z2);
522 }
523 }
0c721ce2 524 }
66730be0 525}
526
527#
affad850 528# (_power)
66730be0 529#
530# Computes z1**z2 = exp(z2 * log z1)).
531#
affad850 532sub _power {
66730be0 533 my ($z1, $z2, $inverted) = @_;
ace5de91 534 if ($inverted) {
2820d885 535 return 1 if $z1 == 0 || $z2 == 1;
536 return 0 if $z2 == 0 && Re($z1) > 0;
ace5de91 537 } else {
2820d885 538 return 1 if $z2 == 0 || $z1 == 1;
539 return 0 if $z1 == 0 && Re($z2) > 0;
ace5de91 540 }
1fa12f56 541 my $w = $inverted ? &exp($z1 * &log($z2))
542 : &exp($z2 * &log($z1));
d09ae4e6 543 # If both arguments cartesian, return cartesian, else polar.
544 return $z1->{c_dirty} == 0 &&
545 (not ref $z2 or $z2->{c_dirty} == 0) ?
affad850 546 cplx(@{$w->_cartesian}) : $w;
66730be0 547}
548
549#
affad850 550# (_spaceship)
66730be0 551#
552# Computes z1 <=> z2.
2820d885 553# Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
66730be0 554#
affad850 555sub _spaceship {
66730be0 556 my ($z1, $z2, $inverted) = @_;
affad850 557 my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
558 my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
66730be0 559 my $sgn = $inverted ? -1 : 1;
560 return $sgn * ($re1 <=> $re2) if $re1 != $re2;
561 return $sgn * ($im1 <=> $im2);
562}
563
564#
affad850 565# (_numeq)
1fa12f56 566#
567# Computes z1 == z2.
568#
affad850 569# (Required in addition to _spaceship() because of NaNs.)
570sub _numeq {
1fa12f56 571 my ($z1, $z2, $inverted) = @_;
affad850 572 my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
573 my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
1fa12f56 574 return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
575}
576
577#
affad850 578# (_negate)
66730be0 579#
580# Computes -z.
581#
affad850 582sub _negate {
66730be0 583 my ($z) = @_;
584 if ($z->{c_dirty}) {
affad850 585 my ($r, $t) = @{$z->_polar};
fb73857a 586 $t = ($t <= 0) ? $t + pi : $t - pi;
587 return (ref $z)->emake($r, $t);
66730be0 588 }
affad850 589 my ($re, $im) = @{$z->_cartesian};
66730be0 590 return (ref $z)->make(-$re, -$im);
591}
592
593#
affad850 594# (_conjugate)
66730be0 595#
affad850 596# Compute complex's _conjugate.
66730be0 597#
affad850 598sub _conjugate {
66730be0 599 my ($z) = @_;
600 if ($z->{c_dirty}) {
affad850 601 my ($r, $t) = @{$z->_polar};
66730be0 602 return (ref $z)->emake($r, -$t);
603 }
affad850 604 my ($re, $im) = @{$z->_cartesian};
66730be0 605 return (ref $z)->make($re, -$im);
606}
607
608#
609# (abs)
610#
b42d0ec9 611# Compute or set complex's norm (rho).
66730be0 612#
613sub abs {
b42d0ec9 614 my ($z, $rho) = @_;
1fa12f56 615 unless (ref $z) {
616 if (@_ == 2) {
617 $_[0] = $_[1];
618 } else {
619 return CORE::abs($z);
620 }
621 }
b42d0ec9 622 if (defined $rho) {
affad850 623 $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
b42d0ec9 624 $z->{p_dirty} = 0;
625 $z->{c_dirty} = 1;
626 return $rho;
627 } else {
affad850 628 return ${$z->_polar}[0];
b42d0ec9 629 }
630}
631
632sub _theta {
633 my $theta = $_[0];
634
affad850 635 if ($$theta > pi()) { $$theta -= pi2 }
636 elsif ($$theta <= -pi()) { $$theta += pi2 }
66730be0 637}
638
639#
640# arg
641#
b42d0ec9 642# Compute or set complex's argument (theta).
66730be0 643#
644sub arg {
b42d0ec9 645 my ($z, $theta) = @_;
646 return $z unless ref $z;
647 if (defined $theta) {
648 _theta(\$theta);
affad850 649 $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
b42d0ec9 650 $z->{p_dirty} = 0;
651 $z->{c_dirty} = 1;
652 } else {
affad850 653 $theta = ${$z->_polar}[1];
b42d0ec9 654 _theta(\$theta);
655 }
656 return $theta;
66730be0 657}
658
659#
660# (sqrt)
661#
0c721ce2 662# Compute sqrt(z).
66730be0 663#
b42d0ec9 664# It is quite tempting to use wantarray here so that in list context
665# sqrt() would return the two solutions. This, however, would
666# break things like
667#
668# print "sqrt(z) = ", sqrt($z), "\n";
669#
670# The two values would be printed side by side without no intervening
671# whitespace, quite confusing.
672# Therefore if you want the two solutions use the root().
673#
66730be0 674sub sqrt {
675 my ($z) = @_;
affad850 676 my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
1fa12f56 677 return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
678 if $im == 0;
affad850 679 my ($r, $t) = @{$z->_polar};
a8693bd3 680 return (ref $z)->emake(CORE::sqrt($r), $t/2);
66730be0 681}
682
683#
684# cbrt
685#
0c721ce2 686# Compute cbrt(z) (cubic root).
66730be0 687#
b42d0ec9 688# Why are we not returning three values? The same answer as for sqrt().
689#
66730be0 690sub cbrt {
691 my ($z) = @_;
1fa12f56 692 return $z < 0 ?
693 -CORE::exp(CORE::log(-$z)/3) :
694 ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
fb73857a 695 unless ref $z;
affad850 696 my ($r, $t) = @{$z->_polar};
1fa12f56 697 return 0 if $r == 0;
a8693bd3 698 return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
66730be0 699}
700
701#
0e505df1 702# _rootbad
703#
704# Die on bad root.
705#
706sub _rootbad {
bf5f1b4c 707 my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
0e505df1 708
709 my @up = caller(1);
fb73857a 710
0e505df1 711 $mess .= "Died at $up[1] line $up[2].\n";
712
713 die $mess;
714}
715
716#
66730be0 717# root
718#
719# Computes all nth root for z, returning an array whose size is n.
720# `n' must be a positive integer.
721#
722# The roots are given by (for k = 0..n-1):
723#
724# z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
725#
726sub root {
bf5f1b4c 727 my ($z, $n, $k) = @_;
0e505df1 728 _rootbad($n) if ($n < 1 or int($n) != $n);
1fa12f56 729 my ($r, $t) = ref $z ?
affad850 730 @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
731 my $theta_inc = pi2 / $n;
66730be0 732 my $rho = $r ** (1/$n);
d09ae4e6 733 my $cartesian = ref $z && $z->{c_dirty} == 0;
bf5f1b4c 734 if (@_ == 2) {
735 my @root;
736 for (my $i = 0, my $theta = $t / $n;
737 $i < $n;
738 $i++, $theta += $theta_inc) {
739 my $w = cplxe($rho, $theta);
740 # Yes, $cartesian is loop invariant.
affad850 741 push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
bf5f1b4c 742 }
743 return @root;
744 } elsif (@_ == 3) {
745 my $w = cplxe($rho, $t / $n + $k * $theta_inc);
affad850 746 return $cartesian ? cplx(@{$w->_cartesian}) : $w;
a0d0e21e 747 }
a0d0e21e 748}
749
66730be0 750#
751# Re
752#
b42d0ec9 753# Return or set Re(z).
66730be0 754#
a0d0e21e 755sub Re {
b42d0ec9 756 my ($z, $Re) = @_;
66730be0 757 return $z unless ref $z;
b42d0ec9 758 if (defined $Re) {
affad850 759 $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
b42d0ec9 760 $z->{c_dirty} = 0;
761 $z->{p_dirty} = 1;
762 } else {
affad850 763 return ${$z->_cartesian}[0];
b42d0ec9 764 }
a0d0e21e 765}
766
66730be0 767#
768# Im
769#
b42d0ec9 770# Return or set Im(z).
66730be0 771#
a0d0e21e 772sub Im {
b42d0ec9 773 my ($z, $Im) = @_;
178326e7 774 return 0 unless ref $z;
b42d0ec9 775 if (defined $Im) {
affad850 776 $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
b42d0ec9 777 $z->{c_dirty} = 0;
778 $z->{p_dirty} = 1;
779 } else {
affad850 780 return ${$z->_cartesian}[1];
b42d0ec9 781 }
782}
783
784#
785# rho
786#
787# Return or set rho(w).
788#
789sub rho {
790 Math::Complex::abs(@_);
791}
792
793#
794# theta
795#
796# Return or set theta(w).
797#
798sub theta {
799 Math::Complex::arg(@_);
a0d0e21e 800}
801
66730be0 802#
803# (exp)
804#
805# Computes exp(z).
806#
807sub exp {
808 my ($z) = @_;
affad850 809 my ($x, $y) = @{$z->_cartesian};
a8693bd3 810 return (ref $z)->emake(CORE::exp($x), $y);
66730be0 811}
812
813#
8c03c583 814# _logofzero
815#
fb73857a 816# Die on logarithm of zero.
8c03c583 817#
818sub _logofzero {
819 my $mess = "$_[0]: Logarithm of zero.\n";
820
821 if (defined $_[1]) {
822 $mess .= "(Because in the definition of $_[0], the argument ";
823 $mess .= "$_[1] " unless ($_[1] eq '0');
824 $mess .= "is 0)\n";
825 }
826
827 my @up = caller(1);
fb73857a 828
8c03c583 829 $mess .= "Died at $up[1] line $up[2].\n";
830
831 die $mess;
832}
833
834#
66730be0 835# (log)
836#
837# Compute log(z).
838#
839sub log {
840 my ($z) = @_;
fb73857a 841 unless (ref $z) {
842 _logofzero("log") if $z == 0;
a8693bd3 843 return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
fb73857a 844 }
affad850 845 my ($r, $t) = @{$z->_polar};
fb73857a 846 _logofzero("log") if $r == 0;
affad850 847 if ($t > pi()) { $t -= pi2 }
848 elsif ($t <= -pi()) { $t += pi2 }
a8693bd3 849 return (ref $z)->make(CORE::log($r), $t);
66730be0 850}
851
852#
0c721ce2 853# ln
854#
855# Alias for log().
856#
857sub ln { Math::Complex::log(@_) }
858
859#
66730be0 860# log10
861#
862# Compute log10(z).
863#
5cd24f17 864
66730be0 865sub log10 {
affad850 866 return Math::Complex::log($_[0]) * _uplog10;
66730be0 867}
868
869#
870# logn
871#
872# Compute logn(z,n) = log(z) / log(n)
873#
874sub logn {
875 my ($z, $n) = @_;
0c721ce2 876 $z = cplx($z, 0) unless ref $z;
9fbe1b12 877 my $logn = $LOGN{$n};
878 $logn = $LOGN{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
1fa12f56 879 return &log($z) / $logn;
66730be0 880}
881
882#
883# (cos)
884#
885# Compute cos(z) = (exp(iz) + exp(-iz))/2.
886#
887sub cos {
888 my ($z) = @_;
1fa12f56 889 return CORE::cos($z) unless ref $z;
affad850 890 my ($x, $y) = @{$z->_cartesian};
a8693bd3 891 my $ey = CORE::exp($y);
1fa12f56 892 my $sx = CORE::sin($x);
893 my $cx = CORE::cos($x);
1515bec6 894 my $ey_1 = $ey ? 1 / $ey : Inf();
1fa12f56 895 return (ref $z)->make($cx * ($ey + $ey_1)/2,
896 $sx * ($ey_1 - $ey)/2);
66730be0 897}
898
899#
900# (sin)
901#
902# Compute sin(z) = (exp(iz) - exp(-iz))/2.
903#
904sub sin {
905 my ($z) = @_;
1fa12f56 906 return CORE::sin($z) unless ref $z;
affad850 907 my ($x, $y) = @{$z->_cartesian};
a8693bd3 908 my $ey = CORE::exp($y);
1fa12f56 909 my $sx = CORE::sin($x);
910 my $cx = CORE::cos($x);
1515bec6 911 my $ey_1 = $ey ? 1 / $ey : Inf();
1fa12f56 912 return (ref $z)->make($sx * ($ey + $ey_1)/2,
913 $cx * ($ey - $ey_1)/2);
66730be0 914}
915
916#
917# tan
918#
919# Compute tan(z) = sin(z) / cos(z).
920#
921sub tan {
922 my ($z) = @_;
1fa12f56 923 my $cz = &cos($z);
924 _divbyzero "tan($z)", "cos($z)" if $cz == 0;
925 return &sin($z) / $cz;
66730be0 926}
927
928#
0c721ce2 929# sec
930#
931# Computes the secant sec(z) = 1 / cos(z).
932#
933sub sec {
934 my ($z) = @_;
1fa12f56 935 my $cz = &cos($z);
0e505df1 936 _divbyzero "sec($z)", "cos($z)" if ($cz == 0);
0c721ce2 937 return 1 / $cz;
938}
939
940#
941# csc
942#
943# Computes the cosecant csc(z) = 1 / sin(z).
944#
945sub csc {
946 my ($z) = @_;
1fa12f56 947 my $sz = &sin($z);
0e505df1 948 _divbyzero "csc($z)", "sin($z)" if ($sz == 0);
0c721ce2 949 return 1 / $sz;
950}
951
66730be0 952#
0c721ce2 953# cosec
66730be0 954#
0c721ce2 955# Alias for csc().
956#
957sub cosec { Math::Complex::csc(@_) }
958
959#
960# cot
961#
fb73857a 962# Computes cot(z) = cos(z) / sin(z).
0c721ce2 963#
964sub cot {
66730be0 965 my ($z) = @_;
1fa12f56 966 my $sz = &sin($z);
0e505df1 967 _divbyzero "cot($z)", "sin($z)" if ($sz == 0);
1fa12f56 968 return &cos($z) / $sz;
66730be0 969}
970
971#
0c721ce2 972# cotan
973#
974# Alias for cot().
975#
976sub cotan { Math::Complex::cot(@_) }
977
978#
66730be0 979# acos
980#
981# Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
982#
983sub acos {
fb73857a 984 my $z = $_[0];
1fa12f56 985 return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
986 if (! ref $z) && CORE::abs($z) <= 1;
40b904b7 987 $z = cplx($z, 0) unless ref $z;
affad850 988 my ($x, $y) = @{$z->_cartesian};
1fa12f56 989 return 0 if $x == 1 && $y == 0;
a8693bd3 990 my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
991 my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
fb73857a 992 my $alpha = ($t1 + $t2)/2;
993 my $beta = ($t1 - $t2)/2;
994 $alpha = 1 if $alpha < 1;
995 if ($beta > 1) { $beta = 1 }
996 elsif ($beta < -1) { $beta = -1 }
a8693bd3 997 my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
998 my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
fb73857a 999 $v = -$v if $y > 0 || ($y == 0 && $x < -1);
40b904b7 1000 return (ref $z)->make($u, $v);
66730be0 1001}
1002
1003#
1004# asin
1005#
1006# Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
1007#
1008sub asin {
fb73857a 1009 my $z = $_[0];
1fa12f56 1010 return CORE::atan2($z, CORE::sqrt(1-$z*$z))
1011 if (! ref $z) && CORE::abs($z) <= 1;
40b904b7 1012 $z = cplx($z, 0) unless ref $z;
affad850 1013 my ($x, $y) = @{$z->_cartesian};
1fa12f56 1014 return 0 if $x == 0 && $y == 0;
a8693bd3 1015 my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
1016 my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
fb73857a 1017 my $alpha = ($t1 + $t2)/2;
1018 my $beta = ($t1 - $t2)/2;
1019 $alpha = 1 if $alpha < 1;
1020 if ($beta > 1) { $beta = 1 }
1021 elsif ($beta < -1) { $beta = -1 }
a8693bd3 1022 my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
1023 my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
fb73857a 1024 $v = -$v if $y > 0 || ($y == 0 && $x < -1);
40b904b7 1025 return (ref $z)->make($u, $v);
66730be0 1026}
1027
1028#
1029# atan
1030#
0c721ce2 1031# Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
66730be0 1032#
1033sub atan {
1034 my ($z) = @_;
a8693bd3 1035 return CORE::atan2($z, 1) unless ref $z;
affad850 1036 my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
1fa12f56 1037 return 0 if $x == 0 && $y == 0;
8c03c583 1038 _divbyzero "atan(i)" if ( $z == i);
1fa12f56 1039 _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
1040 my $log = &log((i + $z) / (i - $z));
affad850 1041 return _ip2 * $log;
a0d0e21e 1042}
1043
66730be0 1044#
0c721ce2 1045# asec
1046#
1047# Computes the arc secant asec(z) = acos(1 / z).
1048#
1049sub asec {
1050 my ($z) = @_;
0e505df1 1051 _divbyzero "asec($z)", $z if ($z == 0);
fb73857a 1052 return acos(1 / $z);
0c721ce2 1053}
1054
1055#
5cd24f17 1056# acsc
0c721ce2 1057#
8c03c583 1058# Computes the arc cosecant acsc(z) = asin(1 / z).
0c721ce2 1059#
5cd24f17 1060sub acsc {
0c721ce2 1061 my ($z) = @_;
0e505df1 1062 _divbyzero "acsc($z)", $z if ($z == 0);
fb73857a 1063 return asin(1 / $z);
0c721ce2 1064}
1065
1066#
5cd24f17 1067# acosec
66730be0 1068#
5cd24f17 1069# Alias for acsc().
0c721ce2 1070#
5cd24f17 1071sub acosec { Math::Complex::acsc(@_) }
0c721ce2 1072
66730be0 1073#
0c721ce2 1074# acot
1075#
8c03c583 1076# Computes the arc cotangent acot(z) = atan(1 / z)
0c721ce2 1077#
1078sub acot {
66730be0 1079 my ($z) = @_;
1fa12f56 1080 _divbyzero "acot(0)" if $z == 0;
1081 return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
1082 unless ref $z;
1083 _divbyzero "acot(i)" if ($z - i == 0);
1084 _logofzero "acot(-i)" if ($z + i == 0);
8c03c583 1085 return atan(1 / $z);
66730be0 1086}
1087
1088#
0c721ce2 1089# acotan
1090#
1091# Alias for acot().
1092#
1093sub acotan { Math::Complex::acot(@_) }
1094
1095#
66730be0 1096# cosh
1097#
1098# Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
1099#
1100sub cosh {
1101 my ($z) = @_;
fb73857a 1102 my $ex;
0e505df1 1103 unless (ref $z) {
a8693bd3 1104 $ex = CORE::exp($z);
f1e71051 1105 return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
0e505df1 1106 }
affad850 1107 my ($x, $y) = @{$z->_cartesian};
a8693bd3 1108 $ex = CORE::exp($x);
1515bec6 1109 my $ex_1 = $ex ? 1 / $ex : Inf();
a8693bd3 1110 return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
1111 CORE::sin($y) * ($ex - $ex_1)/2);
66730be0 1112}
1113
1114#
1115# sinh
1116#
1117# Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
1118#
1119sub sinh {
1120 my ($z) = @_;
fb73857a 1121 my $ex;
0e505df1 1122 unless (ref $z) {
1fa12f56 1123 return 0 if $z == 0;
a8693bd3 1124 $ex = CORE::exp($z);
f1e71051 1125 return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
0e505df1 1126 }
affad850 1127 my ($x, $y) = @{$z->_cartesian};
1fa12f56 1128 my $cy = CORE::cos($y);
1129 my $sy = CORE::sin($y);
a8693bd3 1130 $ex = CORE::exp($x);
1515bec6 1131 my $ex_1 = $ex ? 1 / $ex : Inf();
5240e574 1132 return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
1133 CORE::sin($y) * ($ex + $ex_1)/2);
66730be0 1134}
1135
1136#
1137# tanh
1138#
1139# Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
1140#
1141sub tanh {
1142 my ($z) = @_;
0c721ce2 1143 my $cz = cosh($z);
0e505df1 1144 _divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
1515bec6 1145 my $sz = sinh($z);
1146 return 1 if $cz == $sz;
1147 return -1 if $cz == -$sz;
1148 return $sz / $cz;
66730be0 1149}
1150
1151#
0c721ce2 1152# sech
1153#
1154# Computes the hyperbolic secant sech(z) = 1 / cosh(z).
1155#
1156sub sech {
1157 my ($z) = @_;
1158 my $cz = cosh($z);
0e505df1 1159 _divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
0c721ce2 1160 return 1 / $cz;
1161}
1162
1163#
1164# csch
1165#
1166# Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
66730be0 1167#
0c721ce2 1168sub csch {
1169 my ($z) = @_;
1170 my $sz = sinh($z);
0e505df1 1171 _divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
0c721ce2 1172 return 1 / $sz;
1173}
1174
1175#
1176# cosech
1177#
1178# Alias for csch().
1179#
1180sub cosech { Math::Complex::csch(@_) }
1181
66730be0 1182#
0c721ce2 1183# coth
1184#
1185# Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
1186#
1187sub coth {
66730be0 1188 my ($z) = @_;
0c721ce2 1189 my $sz = sinh($z);
1fa12f56 1190 _divbyzero "coth($z)", "sinh($z)" if $sz == 0;
1515bec6 1191 my $cz = cosh($z);
1192 return 1 if $cz == $sz;
1193 return -1 if $cz == -$sz;
1194 return $cz / $sz;
66730be0 1195}
1196
1197#
0c721ce2 1198# cotanh
1199#
1200# Alias for coth().
1201#
1202sub cotanh { Math::Complex::coth(@_) }
1203
1204#
66730be0 1205# acosh
1206#
f1e71051 1207# Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
66730be0 1208#
1209sub acosh {
1210 my ($z) = @_;
fb73857a 1211 unless (ref $z) {
fb73857a 1212 $z = cplx($z, 0);
1213 }
affad850 1214 my ($re, $im) = @{$z->_cartesian};
fb73857a 1215 if ($im == 0) {
1fa12f56 1216 return CORE::log($re + CORE::sqrt($re*$re - 1))
1217 if $re >= 1;
1218 return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
1219 if CORE::abs($re) < 1;
fb73857a 1220 }
9bc5fa8d 1221 my $t = &sqrt($z * $z - 1) + $z;
40b904b7 1222 # Try Taylor if looking bad (this usually means that
1223 # $z was large negative, therefore the sqrt is really
1224 # close to abs(z), summing that with z...)
9bc5fa8d 1225 $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
1226 if $t == 0;
1227 my $u = &log($t);
40b904b7 1228 $u->Im(-$u->Im) if $re < 0 && $im == 0;
9bc5fa8d 1229 return $re < 0 ? -$u : $u;
66730be0 1230}
1231
1232#
1233# asinh
1234#
f1e71051 1235# Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
66730be0 1236#
1237sub asinh {
1238 my ($z) = @_;
1fa12f56 1239 unless (ref $z) {
1240 my $t = $z + CORE::sqrt($z*$z + 1);
1241 return CORE::log($t) if $t;
1242 }
9bc5fa8d 1243 my $t = &sqrt($z * $z + 1) + $z;
40b904b7 1244 # Try Taylor if looking bad (this usually means that
1245 # $z was large negative, therefore the sqrt is really
1246 # close to abs(z), summing that with z...)
9bc5fa8d 1247 $t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
1248 if $t == 0;
1fa12f56 1249 return &log($t);
66730be0 1250}
1251
1252#
1253# atanh
1254#
f1e71051 1255# Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
66730be0 1256#
1257sub atanh {
1258 my ($z) = @_;
fb73857a 1259 unless (ref $z) {
a8693bd3 1260 return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
fb73857a 1261 $z = cplx($z, 0);
1262 }
1fa12f56 1263 _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
1264 _logofzero 'atanh(-1)' if (1 + $z == 0);
1265 return 0.5 * &log((1 + $z) / (1 - $z));
66730be0 1266}
1267
1268#
0c721ce2 1269# asech
1270#
f1e71051 1271# Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
0c721ce2 1272#
1273sub asech {
1274 my ($z) = @_;
1fa12f56 1275 _divbyzero 'asech(0)', "$z" if ($z == 0);
0c721ce2 1276 return acosh(1 / $z);
1277}
1278
1279#
1280# acsch
66730be0 1281#
f1e71051 1282# Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
66730be0 1283#
0c721ce2 1284sub acsch {
66730be0 1285 my ($z) = @_;
0e505df1 1286 _divbyzero 'acsch(0)', $z if ($z == 0);
0c721ce2 1287 return asinh(1 / $z);
1288}
1289
1290#
1291# acosech
1292#
1293# Alias for acosh().
1294#
1295sub acosech { Math::Complex::acsch(@_) }
1296
1297#
1298# acoth
1299#
f1e71051 1300# Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
0c721ce2 1301#
1302sub acoth {
1303 my ($z) = @_;
1fa12f56 1304 _divbyzero 'acoth(0)' if ($z == 0);
fb73857a 1305 unless (ref $z) {
a8693bd3 1306 return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
fb73857a 1307 $z = cplx($z, 0);
1308 }
1fa12f56 1309 _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
1310 _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
1311 return &log((1 + $z) / ($z - 1)) / 2;
66730be0 1312}
1313
1314#
0c721ce2 1315# acotanh
1316#
1317# Alias for acot().
1318#
1319sub acotanh { Math::Complex::acoth(@_) }
1320
1321#
66730be0 1322# (atan2)
1323#
bf5f1b4c 1324# Compute atan(z1/z2), minding the right quadrant.
66730be0 1325#
1326sub atan2 {
1327 my ($z1, $z2, $inverted) = @_;
fb73857a 1328 my ($re1, $im1, $re2, $im2);
1329 if ($inverted) {
affad850 1330 ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
1331 ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
66730be0 1332 } else {
affad850 1333 ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
1334 ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
fb73857a 1335 }
bf5f1b4c 1336 if ($im1 || $im2) {
1337 # In MATLAB the imaginary parts are ignored.
1338 # warn "atan2: Imaginary parts ignored";
1339 # http://documents.wolfram.com/mathematica/functions/ArcTan
1340 # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
1341 my $s = $z1 * $z1 + $z2 * $z2;
1342 _divbyzero("atan2") if $s == 0;
1343 my $i = &i;
1344 my $r = $z2 + $z1 * $i;
1345 return -$i * &log($r / &sqrt( $s ));
66730be0 1346 }
bf5f1b4c 1347 return CORE::atan2($re1, $re2);
66730be0 1348}
1349
1350#
1351# display_format
1352# ->display_format
1353#
16357284 1354# Set (get if no argument) the display format for all complex numbers that
fb73857a 1355# don't happen to have overridden it via ->display_format
66730be0 1356#
16357284 1357# When called as an object method, this actually sets the display format for
66730be0 1358# the current object.
1359#
1360# Valid object formats are 'c' and 'p' for cartesian and polar. The first
1361# letter is used actually, so the type can be fully spelled out for clarity.
1362#
1363sub display_format {
16357284 1364 my $self = shift;
1365 my %display_format = %DISPLAY_FORMAT;
66730be0 1366
16357284 1367 if (ref $self) { # Called as an object method
1368 if (exists $self->{display_format}) {
1369 my %obj = %{$self->{display_format}};
1370 @display_format{keys %obj} = values %obj;
1371 }
476757f7 1372 }
1373 if (@_ == 1) {
1374 $display_format{style} = shift;
1375 } else {
1376 my %new = @_;
1377 @display_format{keys %new} = values %new;
66730be0 1378 }
1379
476757f7 1380 if (ref $self) { # Called as an object method
16357284 1381 $self->{display_format} = { %display_format };
1382 return
1383 wantarray ?
1384 %{$self->{display_format}} :
1385 $self->{display_format}->{style};
66730be0 1386 }
1387
476757f7 1388 # Called as a class method
16357284 1389 %DISPLAY_FORMAT = %display_format;
1390 return
1391 wantarray ?
1392 %DISPLAY_FORMAT :
1393 $DISPLAY_FORMAT{style};
66730be0 1394}
1395
1396#
affad850 1397# (_stringify)
66730be0 1398#
1399# Show nicely formatted complex number under its cartesian or polar form,
1400# depending on the current display format:
1401#
1402# . If a specific display format has been recorded for this object, use it.
1403# . Otherwise, use the generic current default for all complex numbers,
1404# which is a package global variable.
1405#
affad850 1406sub _stringify {
66730be0 1407 my ($z) = shift;
66730be0 1408
16357284 1409 my $style = $z->display_format;
1410
1411 $style = $DISPLAY_FORMAT{style} unless defined $style;
66730be0 1412
affad850 1413 return $z->_stringify_polar if $style =~ /^p/i;
1414 return $z->_stringify_cartesian;
66730be0 1415}
1416
1417#
affad850 1418# ->_stringify_cartesian
66730be0 1419#
1420# Stringify as a cartesian representation 'a+bi'.
1421#
affad850 1422sub _stringify_cartesian {
66730be0 1423 my $z = shift;
affad850 1424 my ($x, $y) = @{$z->_cartesian};
66730be0 1425 my ($re, $im);
1426
16357284 1427 my %format = $z->display_format;
1428 my $format = $format{format};
1429
1fa12f56 1430 if ($x) {
1431 if ($x =~ /^NaN[QS]?$/i) {
1432 $re = $x;
1433 } else {
b57c8994 1434 if ($x =~ /^-?\Q$Inf\E$/oi) {
1fa12f56 1435 $re = $x;
1436 } else {
1437 $re = defined $format ? sprintf($format, $x) : $x;
1438 }
1439 }
1440 } else {
1441 undef $re;
1442 }
1443
1444 if ($y) {
40b904b7 1445 if ($y =~ /^(NaN[QS]?)$/i) {
1fa12f56 1446 $im = $y;
1447 } else {
b57c8994 1448 if ($y =~ /^-?\Q$Inf\E$/oi) {
1fa12f56 1449 $im = $y;
1450 } else {
40b904b7 1451 $im =
1452 defined $format ?
1453 sprintf($format, $y) :
1454 ($y == 1 ? "" : ($y == -1 ? "-" : $y));
1fa12f56 1455 }
1456 }
1457 $im .= "i";
1458 } else {
1459 undef $im;
16357284 1460 }
66730be0 1461
1fa12f56 1462 my $str = $re;
1463
16357284 1464 if (defined $im) {
1465 if ($y < 0) {
1466 $str .= $im;
1fa12f56 1467 } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
16357284 1468 $str .= "+" if defined $re;
1469 $str .= $im;
1470 }
1fa12f56 1471 } elsif (!defined $re) {
1472 $str = "0";
16357284 1473 }
66730be0 1474
1475 return $str;
1476}
1477
d09ae4e6 1478
66730be0 1479#
affad850 1480# ->_stringify_polar
66730be0 1481#
1482# Stringify as a polar representation '[r,t]'.
1483#
affad850 1484sub _stringify_polar {
66730be0 1485 my $z = shift;
affad850 1486 my ($r, $t) = @{$z->_polar};
66730be0 1487 my $theta;
1488
16357284 1489 my %format = $z->display_format;
1fa12f56 1490 my $format = $format{format};
16357284 1491
b57c8994 1492 if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
1fa12f56 1493 $theta = $t;
1494 } elsif ($t == pi) {
1495 $theta = "pi";
1496 } elsif ($r == 0 || $t == 0) {
1497 $theta = defined $format ? sprintf($format, $t) : $t;
55497cff 1498 }
66730be0 1499
1fa12f56 1500 return "[$r,$theta]" if defined $theta;
1501
66730be0 1502 #
1fa12f56 1503 # Try to identify pi/n and friends.
66730be0 1504 #
1505
affad850 1506 $t -= int(CORE::abs($t) / pi2) * pi2;
1fa12f56 1507
e97e26fa 1508 if ($format{polar_pretty_print} && $t) {
1fa12f56 1509 my ($a, $b);
9bc5fa8d 1510 for $a (2..9) {
1fa12f56 1511 $b = $t * $a / pi;
e97e26fa 1512 if ($b =~ /^-?\d+$/) {
1fa12f56 1513 $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
1514 $theta = "${b}pi/$a";
d09ae4e6 1515 last;
66730be0 1516 }
d09ae4e6 1517 }
66730be0 1518 }
1519
16357284 1520 if (defined $format) {
1521 $r = sprintf($format, $r);
1fa12f56 1522 $theta = sprintf($format, $theta) unless defined $theta;
1523 } else {
1524 $theta = $t unless defined $theta;
16357284 1525 }
1526
1fa12f56 1527 return "[$r,$theta]";
a0d0e21e 1528}
a5f75d66 1529
1515bec6 1530sub Inf {
1531 return $Inf;
1532}
1533
a5f75d66 15341;
1535__END__
1536
1cf6bcb8 1537=pod
1538
a5f75d66 1539=head1 NAME
1540
66730be0 1541Math::Complex - complex numbers and associated mathematical functions
a5f75d66 1542
1543=head1 SYNOPSIS
1544
66730be0 1545 use Math::Complex;
fb73857a 1546
66730be0 1547 $z = Math::Complex->make(5, 6);
1548 $t = 4 - 3*i + $z;
1549 $j = cplxe(1, 2*pi/3);
a5f75d66 1550
1551=head1 DESCRIPTION
1552
66730be0 1553This package lets you create and manipulate complex numbers. By default,
1554I<Perl> limits itself to real numbers, but an extra C<use> statement brings
1555full complex support, along with a full set of mathematical functions
1556typically associated with and/or extended to complex numbers.
1557
1558If you wonder what complex numbers are, they were invented to be able to solve
1559the following equation:
1560
1561 x*x = -1
1562
1563and by definition, the solution is noted I<i> (engineers use I<j> instead since
1564I<i> usually denotes an intensity, but the name does not matter). The number
1565I<i> is a pure I<imaginary> number.
1566
1567The arithmetics with pure imaginary numbers works just like you would expect
1568it with real numbers... you just have to remember that
1569
1570 i*i = -1
1571
1572so you have:
1573
1574 5i + 7i = i * (5 + 7) = 12i
1575 4i - 3i = i * (4 - 3) = i
1576 4i * 2i = -8
1577 6i / 2i = 3
1578 1 / i = -i
1579
1580Complex numbers are numbers that have both a real part and an imaginary
1581part, and are usually noted:
1582
1583 a + bi
1584
1585where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
1586arithmetic with complex numbers is straightforward. You have to
1587keep track of the real and the imaginary parts, but otherwise the
1588rules used for real numbers just apply:
1589
1590 (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
1591 (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
1592
1593A graphical representation of complex numbers is possible in a plane
1594(also called the I<complex plane>, but it's really a 2D plane).
1595The number
1596
1597 z = a + bi
1598
1599is the point whose coordinates are (a, b). Actually, it would
1600be the vector originating from (0, 0) to (a, b). It follows that the addition
1601of two complex numbers is a vectorial addition.
1602
1603Since there is a bijection between a point in the 2D plane and a complex
1604number (i.e. the mapping is unique and reciprocal), a complex number
1605can also be uniquely identified with polar coordinates:
1606
1607 [rho, theta]
1608
1609where C<rho> is the distance to the origin, and C<theta> the angle between
1610the vector and the I<x> axis. There is a notation for this using the
1611exponential form, which is:
1612
1613 rho * exp(i * theta)
1614
1615where I<i> is the famous imaginary number introduced above. Conversion
1616between this form and the cartesian form C<a + bi> is immediate:
1617
1618 a = rho * cos(theta)
1619 b = rho * sin(theta)
1620
1621which is also expressed by this formula:
1622
fb73857a 1623 z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
66730be0 1624
1625In other words, it's the projection of the vector onto the I<x> and I<y>
1626axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
affad850 1627the I<argument> of the complex number. The I<norm> of C<z> is
1628marked here as C<abs(z)>.
66730be0 1629
affad850 1630The polar notation (also known as the trigonometric representation) is
1631much more handy for performing multiplications and divisions of
1632complex numbers, whilst the cartesian notation is better suited for
1633additions and subtractions. Real numbers are on the I<x> axis, and
1634therefore I<y> or I<theta> is zero or I<pi>.
66730be0 1635
1636All the common operations that can be performed on a real number have
1637been defined to work on complex numbers as well, and are merely
1638I<extensions> of the operations defined on real numbers. This means
1639they keep their natural meaning when there is no imaginary part, provided
1640the number is within their definition set.
1641
1642For instance, the C<sqrt> routine which computes the square root of
fb73857a 1643its argument is only defined for non-negative real numbers and yields a
1644non-negative real number (it is an application from B<R+> to B<R+>).
66730be0 1645If we allow it to return a complex number, then it can be extended to
1646negative real numbers to become an application from B<R> to B<C> (the
1647set of complex numbers):
1648
1649 sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
1650
1651It can also be extended to be an application from B<C> to B<C>,
1652whilst its restriction to B<R> behaves as defined above by using
1653the following definition:
1654
1655 sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
1656
fb73857a 1657Indeed, a negative real number can be noted C<[x,pi]> (the modulus
1658I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
1659number) and the above definition states that
66730be0 1660
1661 sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
1662
1663which is exactly what we had defined for negative real numbers above.
b42d0ec9 1664The C<sqrt> returns only one of the solutions: if you want the both,
1665use the C<root> function.
a5f75d66 1666
66730be0 1667All the common mathematical functions defined on real numbers that
1668are extended to complex numbers share that same property of working
1669I<as usual> when the imaginary part is zero (otherwise, it would not
1670be called an extension, would it?).
a5f75d66 1671
66730be0 1672A I<new> operation possible on a complex number that is
1673the identity for real numbers is called the I<conjugate>, and is noted
d1be9408 1674with a horizontal bar above the number, or C<~z> here.
a5f75d66 1675
66730be0 1676 z = a + bi
1677 ~z = a - bi
a5f75d66 1678
66730be0 1679Simple... Now look:
a5f75d66 1680
66730be0 1681 z * ~z = (a + bi) * (a - bi) = a*a + b*b
a5f75d66 1682
66730be0 1683We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
1684distance to the origin, also known as:
a5f75d66 1685
66730be0 1686 rho = abs(z) = sqrt(a*a + b*b)
a5f75d66 1687
66730be0 1688so
1689
1690 z * ~z = abs(z) ** 2
1691
1692If z is a pure real number (i.e. C<b == 0>), then the above yields:
1693
1694 a * a = abs(a) ** 2
1695
1696which is true (C<abs> has the regular meaning for real number, i.e. stands
1697for the absolute value). This example explains why the norm of C<z> is
1698noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
1699is the regular C<abs> we know when the complex number actually has no
1700imaginary part... This justifies I<a posteriori> our use of the C<abs>
1701notation for the norm.
1702
1703=head1 OPERATIONS
1704
1705Given the following notations:
1706
1707 z1 = a + bi = r1 * exp(i * t1)
1708 z2 = c + di = r2 * exp(i * t2)
1709 z = <any complex or real number>
1710
1711the following (overloaded) operations are supported on complex numbers:
1712
1713 z1 + z2 = (a + c) + i(b + d)
1714 z1 - z2 = (a - c) + i(b - d)
1715 z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
1716 z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
1717 z1 ** z2 = exp(z2 * log z1)
b42d0ec9 1718 ~z = a - bi
1719 abs(z) = r1 = sqrt(a*a + b*b)
1720 sqrt(z) = sqrt(r1) * exp(i * t/2)
1721 exp(z) = exp(a) * exp(i * b)
1722 log(z) = log(r1) + i*t
1723 sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
1724 cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
bf5f1b4c 1725 atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
1726
1727The definition used for complex arguments of atan2() is
1728
1729 -i log((x + iy)/sqrt(x*x+y*y))
66730be0 1730
affad850 1731Note that atan2(0, 0) is not well-defined.
1732
66730be0 1733The following extra operations are supported on both real and complex
1734numbers:
1735
1736 Re(z) = a
1737 Im(z) = b
1738 arg(z) = t
b42d0ec9 1739 abs(z) = r
66730be0 1740
1741 cbrt(z) = z ** (1/3)
1742 log10(z) = log(z) / log(10)
1743 logn(z, n) = log(z) / log(n)
1744
1745 tan(z) = sin(z) / cos(z)
0c721ce2 1746
5aabfad6 1747 csc(z) = 1 / sin(z)
1748 sec(z) = 1 / cos(z)
0c721ce2 1749 cot(z) = 1 / tan(z)
66730be0 1750
1751 asin(z) = -i * log(i*z + sqrt(1-z*z))
fb73857a 1752 acos(z) = -i * log(z + i*sqrt(1-z*z))
66730be0 1753 atan(z) = i/2 * log((i+z) / (i-z))
0c721ce2 1754
5aabfad6 1755 acsc(z) = asin(1 / z)
1756 asec(z) = acos(1 / z)
8c03c583 1757 acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
66730be0 1758
1759 sinh(z) = 1/2 (exp(z) - exp(-z))
1760 cosh(z) = 1/2 (exp(z) + exp(-z))
0c721ce2 1761 tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
1762
5aabfad6 1763 csch(z) = 1 / sinh(z)
1764 sech(z) = 1 / cosh(z)
0c721ce2 1765 coth(z) = 1 / tanh(z)
fb73857a 1766
66730be0 1767 asinh(z) = log(z + sqrt(z*z+1))
1768 acosh(z) = log(z + sqrt(z*z-1))
1769 atanh(z) = 1/2 * log((1+z) / (1-z))
66730be0 1770
5aabfad6 1771 acsch(z) = asinh(1 / z)
1772 asech(z) = acosh(1 / z)
0c721ce2 1773 acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
1774
b42d0ec9 1775I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
1776I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
1777I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
1778I<acosech>, I<acotanh>, respectively. C<Re>, C<Im>, C<arg>, C<abs>,
d1be9408 1779C<rho>, and C<theta> can be used also as mutators. The C<cbrt>
b42d0ec9 1780returns only one of the solutions: if you want all three, use the
1781C<root> function.
0c721ce2 1782
1783The I<root> function is available to compute all the I<n>
66730be0 1784roots of some complex, where I<n> is a strictly positive integer.
1785There are exactly I<n> such roots, returned as a list. Getting the
1786number mathematicians call C<j> such that:
1787
1788 1 + j + j*j = 0;
1789
1790is a simple matter of writing:
1791
1792 $j = ((root(1, 3))[1];
1793
1794The I<k>th root for C<z = [r,t]> is given by:
1795
1796 (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
1797
bf5f1b4c 1798You can return the I<k>th root directly by C<root(z, n, k)>,
1799indexing starting from I<zero> and ending at I<n - 1>.
1800
1515bec6 1801The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
1802defined. In order to ensure its restriction to real numbers is conform
1803to what you would expect, the comparison is run on the real part of
1804the complex number first, and imaginary parts are compared only when
1805the real parts match.
66730be0 1806
1807=head1 CREATION
1808
1809To create a complex number, use either:
1810
1811 $z = Math::Complex->make(3, 4);
1812 $z = cplx(3, 4);
1813
1814if you know the cartesian form of the number, or
1815
1816 $z = 3 + 4*i;
1817
fb73857a 1818if you like. To create a number using the polar form, use either:
66730be0 1819
1820 $z = Math::Complex->emake(5, pi/3);
1821 $x = cplxe(5, pi/3);
1822
0c721ce2 1823instead. The first argument is the modulus, the second is the angle
fb73857a 1824(in radians, the full circle is 2*pi). (Mnemonic: C<e> is used as a
1825notation for complex numbers in the polar form).
66730be0 1826
1827It is possible to write:
1828
1829 $x = cplxe(-3, pi/4);
1830
16357284 1831but that will be silently converted into C<[3,-3pi/4]>, since the
1832modulus must be non-negative (it represents the distance to the origin
1833in the complex plane).
66730be0 1834
91cb744f 1835It is also possible to have a complex number as either argument of the
1836C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
b42d0ec9 1837the argument will be used.
1838
1839 $z1 = cplx(-2, 1);
1840 $z2 = cplx($z1, 4);
1841
91cb744f 1842The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
1843understand a single (string) argument of the forms
1844
1845 2-3i
1846 -3i
1847 [2,3]
bf5f1b4c 1848 [2,-3pi/4]
91cb744f 1849 [2]
1850
1851in which case the appropriate cartesian and exponential components
1852will be parsed from the string and used to create new complex numbers.
1853The imaginary component and the theta, respectively, will default to zero.
1854
bf5f1b4c 1855The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
1856understand the case of no arguments: this means plain zero or (0, 0).
1857
1858=head1 DISPLAYING
66730be0 1859
1860When printed, a complex number is usually shown under its cartesian
16357284 1861style I<a+bi>, but there are legitimate cases where the polar style
bf5f1b4c 1862I<[r,t]> is more appropriate. The process of converting the complex
1863number into a string that can be displayed is known as I<stringification>.
66730be0 1864
16357284 1865By calling the class method C<Math::Complex::display_format> and
1866supplying either C<"polar"> or C<"cartesian"> as an argument, you
5287f86b 1867override the default display style, which is C<"cartesian">. Not
16357284 1868supplying any argument returns the current settings.
66730be0 1869
1870This default can be overridden on a per-number basis by calling the
1871C<display_format> method instead. As before, not supplying any argument
5287f86b 1872returns the current display style for this number. Otherwise whatever you
1873specify will be the new display style for I<this> particular number.
66730be0 1874
1875For instance:
1876
1877 use Math::Complex;
1878
1879 Math::Complex::display_format('polar');
16357284 1880 $j = (root(1, 3))[1];
1881 print "j = $j\n"; # Prints "j = [1,2pi/3]"
66730be0 1882 $j->display_format('cartesian');
1883 print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
1884
5287f86b 1885The polar style attempts to emphasize arguments like I<k*pi/n>
9bc5fa8d 1886(where I<n> is a positive integer and I<k> an integer within [-9, +9]),
5287f86b 1887this is called I<polar pretty-printing>.
66730be0 1888
bf5f1b4c 1889For the reverse of stringifying, see the C<make> and C<emake>.
1890
16357284 1891=head2 CHANGED IN PERL 5.6
1892
1893The C<display_format> class method and the corresponding
1894C<display_format> object method can now be called using
1895a parameter hash instead of just a one parameter.
1896
1897The old display format style, which can have values C<"cartesian"> or
40b904b7 1898C<"polar">, can be changed using the C<"style"> parameter.
1899
1900 $j->display_format(style => "polar");
1901
1902The one parameter calling convention also still works.
1903
1904 $j->display_format("polar");
16357284 1905
1906There are two new display parameters.
1907
40b904b7 1908The first one is C<"format">, which is a sprintf()-style format string
1909to be used for both numeric parts of the complex number(s). The is
1910somewhat system-dependent but most often it corresponds to C<"%.15g">.
1911You can revert to the default by setting the C<format> to C<undef>.
16357284 1912
1913 # the $j from the above example
1914
1915 $j->display_format('format' => '%.5f');
1916 print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
40b904b7 1917 $j->display_format('format' => undef);
16357284 1918 print "j = $j\n"; # Prints "j = -0.5+0.86603i"
1919
1920Notice that this affects also the return values of the
1921C<display_format> methods: in list context the whole parameter hash
40b904b7 1922will be returned, as opposed to only the style parameter value.
1923This is a potential incompatibility with earlier versions if you
1924have been calling the C<display_format> method in list context.
16357284 1925
5287f86b 1926The second new display parameter is C<"polar_pretty_print">, which can
1927be set to true or false, the default being true. See the previous
1928section for what this means.
16357284 1929
66730be0 1930=head1 USAGE
1931
1932Thanks to overloading, the handling of arithmetics with complex numbers
1933is simple and almost transparent.
1934
1935Here are some examples:
1936
1937 use Math::Complex;
1938
1939 $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
1940 print "j = $j, j**3 = ", $j ** 3, "\n";
1941 print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
1942
1943 $z = -16 + 0*i; # Force it to be a complex
1944 print "sqrt($z) = ", sqrt($z), "\n";
1945
1946 $k = exp(i * 2*pi/3);
1947 print "$j - $k = ", $j - $k, "\n";
a5f75d66 1948
b42d0ec9 1949 $z->Re(3); # Re, Im, arg, abs,
1950 $j->arg(2); # (the last two aka rho, theta)
1951 # can be used also as mutators.
1952
7637cd07 1953=head1 CONSTANTS
1954
affad850 1955=head2 PI
1956
1957The constant C<pi> and some handy multiples of it (pi2, pi4,
1958and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
1959exported:
1960
1961 use Math::Complex ':pi';
1962 $third_of_circle = pi2 / 3;
1963
1515bec6 1964=head2 Inf
1965
1966The floating point infinity can be exported as a subroutine Inf():
1967
1968 use Math::Complex qw(Inf sinh);
1969 my $AlsoInf = Inf() + 42;
1970 my $AnotherInf = sinh(1e42);
1971 print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
1972
1973Note that the stringified form of infinity varies between platforms:
1974it can be for example any of
1975
1976 inf
1977 infinity
1978 INF
1979 1.#INF
1980
1981or it can be something else.
1982
7637cd07 1983Also note that in some platforms trying to use the infinity in
1984arithmetic operations may result in Perl crashing because using
1985an infinity causes SIGFPE or its moral equivalent to be sent.
1986The way to ignore this is
1987
1988 local $SIG{FPE} = sub { };
1989
b42d0ec9 1990=head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
5aabfad6 1991
1992The division (/) and the following functions
1993
b42d0ec9 1994 log ln log10 logn
2820d885 1995 tan sec csc cot
b42d0ec9 1996 atan asec acsc acot
1997 tanh sech csch coth
1998 atanh asech acsch acoth
5aabfad6 1999
2000cannot be computed for all arguments because that would mean dividing
8c03c583 2001by zero or taking logarithm of zero. These situations cause fatal
2002runtime errors looking like this
5aabfad6 2003
2004 cot(0): Division by zero.
5cd24f17 2005 (Because in the definition of cot(0), the divisor sin(0) is 0)
5aabfad6 2006 Died at ...
2007
8c03c583 2008or
2009
2010 atanh(-1): Logarithm of zero.
2011 Died at...
2012
2013For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
d1be9408 2014C<asech>, C<acsch>, the argument cannot be C<0> (zero). For the
b42d0ec9 2015logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
2016be C<1> (one). For the C<atanh>, C<acoth>, the argument cannot be
2017C<-1> (minus one). For the C<atan>, C<acot>, the argument cannot be
2018C<i> (the imaginary unit). For the C<atan>, C<acoth>, the argument
2019cannot be C<-i> (the negative imaginary unit). For the C<tan>,
2020C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
bf5f1b4c 2021is any integer. atan2(0, 0) is undefined, and if the complex arguments
2022are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
b42d0ec9 2023
2024Note that because we are operating on approximations of real numbers,
2025these errors can happen when merely `too close' to the singularities
40b904b7 2026listed above.
b42d0ec9 2027
2028=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
2029
2030The C<make> and C<emake> accept both real and complex arguments.
2031When they cannot recognize the arguments they will die with error
2032messages like the following
2033
2034 Math::Complex::make: Cannot take real part of ...
2035 Math::Complex::make: Cannot take real part of ...
2036 Math::Complex::emake: Cannot take rho of ...
2037 Math::Complex::emake: Cannot take theta of ...
5cd24f17 2038
a5f75d66 2039=head1 BUGS
2040
5cd24f17 2041Saying C<use Math::Complex;> exports many mathematical routines in the
bf5f1b4c 2042caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
fb73857a 2043This is construed as a feature by the Authors, actually... ;-)
a5f75d66 2044
66730be0 2045All routines expect to be given real or complex numbers. Don't attempt to
2046use BigFloat, since Perl has currently no rule to disambiguate a '+'
2047operation (for instance) between two overloaded entities.
a5f75d66 2048
d09ae4e6 2049In Cray UNICOS there is some strange numerical instability that results
2050in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast. Beware.
2051The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
2052Whatever it is, it does not manifest itself anywhere else where Perl runs.
2053
7637cd07 2054=head1 SEE ALSO
2055
2056L<Math::Trig>
2057
0c721ce2 2058=head1 AUTHORS
a5f75d66 2059
affad850 2060Daniel S. Lewart <F<lewart!at!uiuc.edu>>
2061Jarkko Hietaniemi <F<jhi!at!iki.fi>>
2062Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>
fb73857a 2063
1515bec6 2064=head1 LICENSE
2065
2066This library is free software; you can redistribute it and/or modify
2067it under the same terms as Perl itself.
2068
5cd24f17 2069=cut
2070
b42d0ec9 20711;
2072
5cd24f17 2073# eof