Moved _bucket_exists to Engine
[dbsrgits/DBM-Deep.git] / lib / DBM / Deep.pm
CommitLineData
ffed8b01 1package DBM::Deep;
2
3##
4# DBM::Deep
5#
6# Description:
7# Multi-level database module for storing hash trees, arrays and simple
8# key/value pairs into FTP-able, cross-platform binary database files.
9#
10# Type `perldoc DBM::Deep` for complete documentation.
11#
12# Usage Examples:
13# my %db;
14# tie %db, 'DBM::Deep', 'my_database.db'; # standard tie() method
15#
16# my $db = new DBM::Deep( 'my_database.db' ); # preferred OO method
17#
18# $db->{my_scalar} = 'hello world';
19# $db->{my_hash} = { larry => 'genius', hashes => 'fast' };
20# $db->{my_array} = [ 1, 2, 3, time() ];
21# $db->{my_complex} = [ 'hello', { perl => 'rules' }, 42, 99 ];
22# push @{$db->{my_array}}, 'another value';
23# my @key_list = keys %{$db->{my_hash}};
24# print "This module " . $db->{my_complex}->[1]->{perl} . "!\n";
25#
26# Copyright:
acd4faf2 27# (c) 2002-2006 Joseph Huckaby. All Rights Reserved.
ffed8b01 28# This program is free software; you can redistribute it and/or
29# modify it under the same terms as Perl itself.
30##
31
32use strict;
8b957036 33
596e9574 34use Fcntl qw( :DEFAULT :flock :seek );
ffed8b01 35use Digest::MD5 ();
36use Scalar::Util ();
ffed8b01 37
95967a5e 38use DBM::Deep::Engine;
39
596e9574 40use vars qw( $VERSION );
3a7a0dce 41$VERSION = q(0.99_01);
ffed8b01 42
43##
44# Set to 4 and 'N' for 32-bit offset tags (default). Theoretical limit of 4 GB per file.
45# (Perl must be compiled with largefile support for files > 2 GB)
46#
47# Set to 8 and 'Q' for 64-bit offsets. Theoretical limit of 16 XB per file.
48# (Perl must be compiled with largefile and 64-bit long support)
49##
50#my $LONG_SIZE = 4;
51#my $LONG_PACK = 'N';
52
53##
54# Set to 4 and 'N' for 32-bit data length prefixes. Limit of 4 GB for each key/value.
55# Upgrading this is possible (see above) but probably not necessary. If you need
56# more than 4 GB for a single key or value, this module is really not for you :-)
57##
58#my $DATA_LENGTH_SIZE = 4;
59#my $DATA_LENGTH_PACK = 'N';
6fe26b29 60our ($LONG_SIZE, $LONG_PACK, $DATA_LENGTH_SIZE, $DATA_LENGTH_PACK);
ffed8b01 61
62##
63# Maximum number of buckets per list before another level of indexing is done.
64# Increase this value for slightly greater speed, but larger database files.
65# DO NOT decrease this value below 16, due to risk of recursive reindex overrun.
66##
20f7b20c 67our $MAX_BUCKETS = 16;
ffed8b01 68
69##
70# Better not adjust anything below here, unless you're me :-)
71##
72
73##
74# Setup digest function for keys
75##
6fe26b29 76our ($DIGEST_FUNC, $HASH_SIZE);
ffed8b01 77#my $DIGEST_FUNC = \&Digest::MD5::md5;
78
79##
80# Precalculate index and bucket sizes based on values above.
81##
82#my $HASH_SIZE = 16;
a20d9a3f 83our ($INDEX_SIZE, $BUCKET_SIZE, $BUCKET_LIST_SIZE);
ffed8b01 84
85set_digest();
86#set_pack();
4d35d856 87#_precalc_sizes();
ffed8b01 88
89##
90# Setup file and tag signatures. These should never change.
91##
81d3d316 92sub SIG_FILE () { 'DPDB' }
93sub SIG_HASH () { 'H' }
94sub SIG_ARRAY () { 'A' }
95sub SIG_SCALAR () { 'S' }
96sub SIG_NULL () { 'N' }
97sub SIG_DATA () { 'D' }
98sub SIG_INDEX () { 'I' }
99sub SIG_BLIST () { 'B' }
100sub SIG_SIZE () { 1 }
ffed8b01 101
102##
103# Setup constants for users to pass to new()
104##
4d35d856 105sub TYPE_HASH () { SIG_HASH }
106sub TYPE_ARRAY () { SIG_ARRAY }
107sub TYPE_SCALAR () { SIG_SCALAR }
ffed8b01 108
0ca7ea98 109sub _get_args {
110 my $proto = shift;
111
112 my $args;
113 if (scalar(@_) > 1) {
114 if ( @_ % 2 ) {
115 $proto->_throw_error( "Odd number of parameters to " . (caller(1))[2] );
116 }
117 $args = {@_};
118 }
4d35d856 119 elsif ( ref $_[0] ) {
120 unless ( eval { local $SIG{'__DIE__'}; %{$_[0]} || 1 } ) {
0ca7ea98 121 $proto->_throw_error( "Not a hashref in args to " . (caller(1))[2] );
122 }
123 $args = $_[0];
124 }
125 else {
126 $args = { file => shift };
127 }
128
129 return $args;
130}
131
ffed8b01 132sub new {
133 ##
134 # Class constructor method for Perl OO interface.
135 # Calls tie() and returns blessed reference to tied hash or array,
136 # providing a hybrid OO/tie interface.
137 ##
138 my $class = shift;
0ca7ea98 139 my $args = $class->_get_args( @_ );
ffed8b01 140
141 ##
142 # Check if we want a tied hash or array.
143 ##
144 my $self;
145 if (defined($args->{type}) && $args->{type} eq TYPE_ARRAY) {
6fe26b29 146 $class = 'DBM::Deep::Array';
147 require DBM::Deep::Array;
cc4bef86 148 tie @$self, $class, %$args;
ffed8b01 149 }
150 else {
6fe26b29 151 $class = 'DBM::Deep::Hash';
152 require DBM::Deep::Hash;
cc4bef86 153 tie %$self, $class, %$args;
ffed8b01 154 }
155
cc4bef86 156 return bless $self, $class;
ffed8b01 157}
158
0795f290 159sub _init {
160 ##
161 # Setup $self and bless into this class.
162 ##
163 my $class = shift;
164 my $args = shift;
165
166 # These are the defaults to be optionally overridden below
167 my $self = bless {
95967a5e 168 type => TYPE_HASH,
0795f290 169 base_offset => length(SIG_FILE),
95967a5e 170 engine => 'DBM::Deep::Engine',
0795f290 171 }, $class;
172
173 foreach my $param ( keys %$self ) {
174 next unless exists $args->{$param};
175 $self->{$param} = delete $args->{$param}
ffed8b01 176 }
0795f290 177
37c5bcf0 178 # locking implicitly enables autoflush
179 if ($args->{locking}) { $args->{autoflush} = 1; }
180
0795f290 181 $self->{root} = exists $args->{root}
182 ? $args->{root}
183 : DBM::Deep::_::Root->new( $args );
184
a20d9a3f 185 if (!defined($self->_fh)) { $self->{engine}->open( $self ); }
0795f290 186
187 return $self;
ffed8b01 188}
189
ffed8b01 190sub TIEHASH {
6fe26b29 191 shift;
192 require DBM::Deep::Hash;
193 return DBM::Deep::Hash->TIEHASH( @_ );
ffed8b01 194}
195
196sub TIEARRAY {
6fe26b29 197 shift;
198 require DBM::Deep::Array;
199 return DBM::Deep::Array->TIEARRAY( @_ );
ffed8b01 200}
201
cc4bef86 202#XXX Unneeded now ...
203#sub DESTROY {
204#}
ffed8b01 205
261d1296 206sub _find_bucket_list {
ffed8b01 207 ##
208 # Locate offset for bucket list, given digested key
209 ##
210 my $self = shift;
211 my $md5 = shift;
212
213 ##
214 # Locate offset for bucket list using digest index system
215 ##
216 my $ch = 0;
d4b1166e 217 my $tag = $self->{engine}->load_tag($self, $self->_base_offset);
ffed8b01 218 if (!$tag) { return; }
219
220 while ($tag->{signature} ne SIG_BLIST) {
d4b1166e 221 $tag = $self->{engine}->index_lookup($self, $tag, ord(substr($md5, $ch, 1)));
ffed8b01 222 if (!$tag) { return; }
223 $ch++;
224 }
225
226 return $tag;
227}
228
261d1296 229sub _traverse_index {
ffed8b01 230 ##
231 # Scan index and recursively step into deeper levels, looking for next key.
232 ##
233 my ($self, $offset, $ch, $force_return_next) = @_;
234 $force_return_next = undef unless $force_return_next;
235
d4b1166e 236 my $tag = $self->{engine}->load_tag($self, $offset );
f2fb5dff 237
4d35d856 238 my $fh = $self->_fh;
ffed8b01 239
240 if ($tag->{signature} ne SIG_BLIST) {
241 my $content = $tag->{content};
242 my $start;
243 if ($self->{return_next}) { $start = 0; }
244 else { $start = ord(substr($self->{prev_md5}, $ch, 1)); }
245
246 for (my $index = $start; $index < 256; $index++) {
247 my $subloc = unpack($LONG_PACK, substr($content, $index * $LONG_SIZE, $LONG_SIZE) );
248 if ($subloc) {
261d1296 249 my $result = $self->_traverse_index( $subloc, $ch + 1, $force_return_next );
ffed8b01 250 if (defined($result)) { return $result; }
251 }
252 } # index loop
253
254 $self->{return_next} = 1;
255 } # tag is an index
256
257 elsif ($tag->{signature} eq SIG_BLIST) {
258 my $keys = $tag->{content};
259 if ($force_return_next) { $self->{return_next} = 1; }
260
261 ##
262 # Iterate through buckets, looking for a key match
263 ##
264 for (my $i=0; $i<$MAX_BUCKETS; $i++) {
265 my $key = substr($keys, $i * $BUCKET_SIZE, $HASH_SIZE);
266 my $subloc = unpack($LONG_PACK, substr($keys, ($i * $BUCKET_SIZE) + $HASH_SIZE, $LONG_SIZE));
267
268 if (!$subloc) {
269 ##
270 # End of bucket list -- return to outer loop
271 ##
272 $self->{return_next} = 1;
273 last;
274 }
275 elsif ($key eq $self->{prev_md5}) {
276 ##
277 # Located previous key -- return next one found
278 ##
279 $self->{return_next} = 1;
280 next;
281 }
282 elsif ($self->{return_next}) {
283 ##
284 # Seek to bucket location and skip over signature
285 ##
714618f0 286 seek($fh, $subloc + SIG_SIZE + $self->_root->{file_offset}, SEEK_SET);
ffed8b01 287
288 ##
289 # Skip over value to get to plain key
290 ##
291 my $size;
f2fb5dff 292 read( $fh, $size, $DATA_LENGTH_SIZE); $size = unpack($DATA_LENGTH_PACK, $size);
0af414a6 293 if ($size) { seek($fh, $size, SEEK_CUR); }
ffed8b01 294
295 ##
296 # Read in plain key and return as scalar
297 ##
298 my $plain_key;
f2fb5dff 299 read( $fh, $size, $DATA_LENGTH_SIZE); $size = unpack($DATA_LENGTH_PACK, $size);
300 if ($size) { read( $fh, $plain_key, $size); }
ffed8b01 301
302 return $plain_key;
303 }
304 } # bucket loop
305
306 $self->{return_next} = 1;
307 } # tag is a bucket list
308
309 return;
310}
311
261d1296 312sub _get_next_key {
ffed8b01 313 ##
314 # Locate next key, given digested previous one
315 ##
2ac02042 316 my $self = $_[0]->_get_self;
ffed8b01 317
318 $self->{prev_md5} = $_[1] ? $_[1] : undef;
319 $self->{return_next} = 0;
320
321 ##
322 # If the previous key was not specifed, start at the top and
323 # return the first one found.
324 ##
325 if (!$self->{prev_md5}) {
326 $self->{prev_md5} = chr(0) x $HASH_SIZE;
327 $self->{return_next} = 1;
328 }
329
4d35d856 330 return $self->_traverse_index( $self->_base_offset, 0 );
ffed8b01 331}
332
333sub lock {
334 ##
335 # If db locking is set, flock() the db file. If called multiple
336 # times before unlock(), then the same number of unlocks() must
337 # be called before the lock is released.
338 ##
2ac02042 339 my $self = $_[0]->_get_self;
b8b48a59 340 my $type = $_[1];
ffed8b01 341 $type = LOCK_EX unless defined $type;
342
4d35d856 343 if (!defined($self->_fh)) { return; }
7f441181 344
4d35d856 345 if ($self->_root->{locking}) {
346 if (!$self->_root->{locked}) {
347 flock($self->_fh, $type);
a59a8dca 348
37c5bcf0 349 # refresh end counter in case file has changed size
4d35d856 350 my @stats = stat($self->_root->{file});
351 $self->_root->{end} = $stats[7];
37c5bcf0 352
a59a8dca 353 # double-check file inode, in case another process
354 # has optimize()d our file while we were waiting.
4d35d856 355 if ($stats[1] != $self->_root->{inode}) {
cd59cad8 356 $self->{engine}->open( $self ); # re-open
4d35d856 357 flock($self->_fh, $type); # re-lock
358 $self->_root->{end} = (stat($self->_fh))[7]; # re-end
a59a8dca 359 }
360 }
4d35d856 361 $self->_root->{locked}++;
b4522594 362
363 return 1;
ffed8b01 364 }
b4522594 365
366 return;
ffed8b01 367}
368
369sub unlock {
370 ##
371 # If db locking is set, unlock the db file. See note in lock()
372 # regarding calling lock() multiple times.
373 ##
2ac02042 374 my $self = $_[0]->_get_self;
7f441181 375
4d35d856 376 if (!defined($self->_fh)) { return; }
ffed8b01 377
4d35d856 378 if ($self->_root->{locking} && $self->_root->{locked} > 0) {
379 $self->_root->{locked}--;
380 if (!$self->_root->{locked}) { flock($self->_fh, LOCK_UN); }
b4522594 381
382 return 1;
ffed8b01 383 }
b4522594 384
385 return;
ffed8b01 386}
387
906c8e01 388sub _copy_value {
389 my $self = shift->_get_self;
390 my ($spot, $value) = @_;
391
392 if ( !ref $value ) {
393 ${$spot} = $value;
394 }
395 elsif ( eval { local $SIG{__DIE__}; $value->isa( 'DBM::Deep' ) } ) {
396 my $type = $value->_type;
397 ${$spot} = $type eq TYPE_HASH ? {} : [];
398 $value->_copy_node( ${$spot} );
399 }
400 else {
401 my $r = Scalar::Util::reftype( $value );
402 my $c = Scalar::Util::blessed( $value );
403 if ( $r eq 'ARRAY' ) {
404 ${$spot} = [ @{$value} ];
405 }
406 else {
407 ${$spot} = { %{$value} };
408 }
95bbd935 409 ${$spot} = bless ${$spot}, $c
906c8e01 410 if defined $c;
411 }
412
413 return 1;
414}
415
261d1296 416sub _copy_node {
ffed8b01 417 ##
418 # Copy single level of keys or elements to new DB handle.
419 # Recurse for nested structures
420 ##
906c8e01 421 my $self = shift->_get_self;
422 my ($db_temp) = @_;
b8b48a59 423
4d35d856 424 if ($self->_type eq TYPE_HASH) {
ffed8b01 425 my $key = $self->first_key();
426 while ($key) {
427 my $value = $self->get($key);
906c8e01 428 $self->_copy_value( \$db_temp->{$key}, $value );
ffed8b01 429 $key = $self->next_key($key);
430 }
431 }
432 else {
433 my $length = $self->length();
434 for (my $index = 0; $index < $length; $index++) {
435 my $value = $self->get($index);
906c8e01 436 $self->_copy_value( \$db_temp->[$index], $value );
ffed8b01 437 }
438 }
906c8e01 439
440 return 1;
ffed8b01 441}
442
443sub export {
444 ##
445 # Recursively export into standard Perl hashes and arrays.
446 ##
2ac02042 447 my $self = $_[0]->_get_self;
ffed8b01 448
449 my $temp;
4d35d856 450 if ($self->_type eq TYPE_HASH) { $temp = {}; }
451 elsif ($self->_type eq TYPE_ARRAY) { $temp = []; }
ffed8b01 452
453 $self->lock();
261d1296 454 $self->_copy_node( $temp );
ffed8b01 455 $self->unlock();
456
457 return $temp;
458}
459
460sub import {
461 ##
462 # Recursively import Perl hash/array structure
463 ##
464 #XXX This use of ref() seems to be ok
465 if (!ref($_[0])) { return; } # Perl calls import() on use -- ignore
466
2ac02042 467 my $self = $_[0]->_get_self;
ffed8b01 468 my $struct = $_[1];
469
470 #XXX This use of ref() seems to be ok
471 if (!ref($struct)) {
472 ##
473 # struct is not a reference, so just import based on our type
474 ##
475 shift @_;
476
4d35d856 477 if ($self->_type eq TYPE_HASH) { $struct = {@_}; }
478 elsif ($self->_type eq TYPE_ARRAY) { $struct = [@_]; }
ffed8b01 479 }
480
481 my $r = Scalar::Util::reftype($struct) || '';
4d35d856 482 if ($r eq "HASH" && $self->_type eq TYPE_HASH) {
ffed8b01 483 foreach my $key (keys %$struct) { $self->put($key, $struct->{$key}); }
484 }
4d35d856 485 elsif ($r eq "ARRAY" && $self->_type eq TYPE_ARRAY) {
ffed8b01 486 $self->push( @$struct );
487 }
488 else {
261d1296 489 return $self->_throw_error("Cannot import: type mismatch");
ffed8b01 490 }
491
492 return 1;
493}
494
495sub optimize {
496 ##
497 # Rebuild entire database into new file, then move
498 # it back on top of original.
499 ##
2ac02042 500 my $self = $_[0]->_get_self;
cc4bef86 501
502#XXX Need to create a new test for this
4d35d856 503# if ($self->_root->{links} > 1) {
cc4bef86 504# return $self->_throw_error("Cannot optimize: reference count is greater than 1");
505# }
ffed8b01 506
507 my $db_temp = DBM::Deep->new(
4d35d856 508 file => $self->_root->{file} . '.tmp',
509 type => $self->_type
ffed8b01 510 );
511 if (!$db_temp) {
261d1296 512 return $self->_throw_error("Cannot optimize: failed to open temp file: $!");
ffed8b01 513 }
514
515 $self->lock();
261d1296 516 $self->_copy_node( $db_temp );
ffed8b01 517 undef $db_temp;
518
519 ##
520 # Attempt to copy user, group and permissions over to new file
521 ##
4d35d856 522 my @stats = stat($self->_fh);
ffed8b01 523 my $perms = $stats[2] & 07777;
524 my $uid = $stats[4];
525 my $gid = $stats[5];
4d35d856 526 chown( $uid, $gid, $self->_root->{file} . '.tmp' );
527 chmod( $perms, $self->_root->{file} . '.tmp' );
ffed8b01 528
529 # q.v. perlport for more information on this variable
90f93b43 530 if ( $^O eq 'MSWin32' || $^O eq 'cygwin' ) {
ffed8b01 531 ##
532 # Potential race condition when optmizing on Win32 with locking.
533 # The Windows filesystem requires that the filehandle be closed
534 # before it is overwritten with rename(). This could be redone
535 # with a soft copy.
536 ##
537 $self->unlock();
cd59cad8 538 $self->{engine}->close( $self );
ffed8b01 539 }
540
4d35d856 541 if (!rename $self->_root->{file} . '.tmp', $self->_root->{file}) {
542 unlink $self->_root->{file} . '.tmp';
ffed8b01 543 $self->unlock();
261d1296 544 return $self->_throw_error("Optimize failed: Cannot copy temp file over original: $!");
ffed8b01 545 }
546
547 $self->unlock();
cd59cad8 548 $self->{engine}->close( $self );
549 $self->{engine}->open( $self );
ffed8b01 550
551 return 1;
552}
553
554sub clone {
555 ##
556 # Make copy of object and return
557 ##
2ac02042 558 my $self = $_[0]->_get_self;
ffed8b01 559
560 return DBM::Deep->new(
4d35d856 561 type => $self->_type,
562 base_offset => $self->_base_offset,
563 root => $self->_root
ffed8b01 564 );
565}
566
567{
568 my %is_legal_filter = map {
569 $_ => ~~1,
570 } qw(
571 store_key store_value
572 fetch_key fetch_value
573 );
574
575 sub set_filter {
576 ##
577 # Setup filter function for storing or fetching the key or value
578 ##
2ac02042 579 my $self = $_[0]->_get_self;
ffed8b01 580 my $type = lc $_[1];
581 my $func = $_[2] ? $_[2] : undef;
582
583 if ( $is_legal_filter{$type} ) {
4d35d856 584 $self->_root->{"filter_$type"} = $func;
ffed8b01 585 return 1;
586 }
587
588 return;
589 }
590}
591
592##
593# Accessor methods
594##
595
4d35d856 596sub _root {
ffed8b01 597 ##
598 # Get access to the root structure
599 ##
2ac02042 600 my $self = $_[0]->_get_self;
ffed8b01 601 return $self->{root};
602}
603
4d35d856 604sub _fh {
ffed8b01 605 ##
90f93b43 606 # Get access to the raw fh
ffed8b01 607 ##
b8b48a59 608 #XXX It will be useful, though, when we split out HASH and ARRAY
2ac02042 609 my $self = $_[0]->_get_self;
4d35d856 610 return $self->_root->{fh};
ffed8b01 611}
612
4d35d856 613sub _type {
ffed8b01 614 ##
615 # Get type of current node (TYPE_HASH or TYPE_ARRAY)
616 ##
2ac02042 617 my $self = $_[0]->_get_self;
ffed8b01 618 return $self->{type};
619}
620
4d35d856 621sub _base_offset {
ffed8b01 622 ##
623 # Get base_offset of current node (TYPE_HASH or TYPE_ARRAY)
624 ##
2ac02042 625 my $self = $_[0]->_get_self;
ffed8b01 626 return $self->{base_offset};
627}
628
ffed8b01 629##
630# Utility methods
631##
632
261d1296 633sub _throw_error {
95967a5e 634 die "DBM::Deep: $_[1]\n";
ffed8b01 635}
636
4d35d856 637sub _precalc_sizes {
ffed8b01 638 ##
639 # Precalculate index, bucket and bucket list sizes
640 ##
641
642 #XXX I don't like this ...
643 set_pack() unless defined $LONG_SIZE;
644
645 $INDEX_SIZE = 256 * $LONG_SIZE;
646 $BUCKET_SIZE = $HASH_SIZE + $LONG_SIZE;
647 $BUCKET_LIST_SIZE = $MAX_BUCKETS * $BUCKET_SIZE;
648}
649
650sub set_pack {
651 ##
652 # Set pack/unpack modes (see file header for more)
653 ##
654 my ($long_s, $long_p, $data_s, $data_p) = @_;
655
656 $LONG_SIZE = $long_s ? $long_s : 4;
657 $LONG_PACK = $long_p ? $long_p : 'N';
658
659 $DATA_LENGTH_SIZE = $data_s ? $data_s : 4;
660 $DATA_LENGTH_PACK = $data_p ? $data_p : 'N';
661
4d35d856 662 _precalc_sizes();
ffed8b01 663}
664
665sub set_digest {
666 ##
667 # Set key digest function (default is MD5)
668 ##
669 my ($digest_func, $hash_size) = @_;
670
671 $DIGEST_FUNC = $digest_func ? $digest_func : \&Digest::MD5::md5;
672 $HASH_SIZE = $hash_size ? $hash_size : 16;
673
4d35d856 674 _precalc_sizes();
ffed8b01 675}
676
acd4faf2 677sub _is_writable {
678 my $fh = shift;
679 (O_WRONLY | O_RDWR) & fcntl( $fh, F_GETFL, my $slush = 0);
680}
681
9be51a89 682#sub _is_readable {
683# my $fh = shift;
684# (O_RDONLY | O_RDWR) & fcntl( $fh, F_GETFL, my $slush = 0);
685#}
acd4faf2 686
ffed8b01 687##
688# tie() methods (hashes and arrays)
689##
690
691sub STORE {
692 ##
693 # Store single hash key/value or array element in database.
694 ##
2ac02042 695 my $self = $_[0]->_get_self;
81d3d316 696 my $key = $_[1];
697
9ab67b8c 698 # User may be storing a hash, in which case we do not want it run
699 # through the filtering system
4d35d856 700 my $value = ($self->_root->{filter_store_value} && !ref($_[2]))
701 ? $self->_root->{filter_store_value}->($_[2])
81d3d316 702 : $_[2];
ffed8b01 703
ffed8b01 704 my $md5 = $DIGEST_FUNC->($key);
705
acd4faf2 706 unless ( _is_writable( $self->_fh ) ) {
707 $self->_throw_error( 'Cannot write to a readonly filehandle' );
708 }
ffed8b01 709
710 ##
711 # Request exclusive lock for writing
712 ##
713 $self->lock( LOCK_EX );
a59a8dca 714
4d35d856 715 my $fh = $self->_fh;
ffed8b01 716
717 ##
718 # Locate offset for bucket list using digest index system
719 ##
d4b1166e 720 my $tag = $self->{engine}->load_tag($self, $self->_base_offset);
ffed8b01 721 if (!$tag) {
d4b1166e 722 $tag = $self->{engine}->create_tag($self, $self->_base_offset, SIG_INDEX, chr(0) x $INDEX_SIZE);
ffed8b01 723 }
724
725 my $ch = 0;
726 while ($tag->{signature} ne SIG_BLIST) {
727 my $num = ord(substr($md5, $ch, 1));
b504ea40 728
729 my $ref_loc = $tag->{offset} + ($num * $LONG_SIZE);
d4b1166e 730 my $new_tag = $self->{engine}->index_lookup($self, $tag, $num);
b504ea40 731
ffed8b01 732 if (!$new_tag) {
714618f0 733 seek($fh, $ref_loc + $self->_root->{file_offset}, SEEK_SET);
b504ea40 734 print( $fh pack($LONG_PACK, $self->_root->{end}) );
ffed8b01 735
d4b1166e 736 $tag = $self->{engine}->create_tag($self, $self->_root->{end}, SIG_BLIST, chr(0) x $BUCKET_LIST_SIZE);
b504ea40 737
ffed8b01 738 $tag->{ref_loc} = $ref_loc;
739 $tag->{ch} = $ch;
b504ea40 740
ffed8b01 741 last;
742 }
743 else {
ffed8b01 744 $tag = $new_tag;
b504ea40 745
ffed8b01 746 $tag->{ref_loc} = $ref_loc;
747 $tag->{ch} = $ch;
748 }
749 $ch++;
750 }
751
752 ##
753 # Add key/value to bucket list
754 ##
20f7b20c 755 my $result = $self->{engine}->add_bucket( $self, $tag, $md5, $key, $value );
ffed8b01 756
ffed8b01 757 $self->unlock();
758
759 return $result;
760}
761
762sub FETCH {
763 ##
764 # Fetch single value or element given plain key or array index
765 ##
cb79ec85 766 my $self = shift->_get_self;
767 my $key = shift;
ffed8b01 768
cb79ec85 769 my $md5 = $DIGEST_FUNC->($key);
770
ffed8b01 771 ##
772 # Request shared lock for reading
773 ##
774 $self->lock( LOCK_SH );
775
261d1296 776 my $tag = $self->_find_bucket_list( $md5 );
ffed8b01 777 if (!$tag) {
778 $self->unlock();
779 return;
780 }
781
782 ##
783 # Get value from bucket list
784 ##
9020ee8c 785 my $result = $self->{engine}->get_bucket_value( $self, $tag, $md5 );
ffed8b01 786
787 $self->unlock();
788
789 #XXX What is ref() checking here?
aeeb5497 790 #YYY Filters only apply on scalar values, so the ref check is making
791 #YYY sure the fetched bucket is a scalar, not a child hash or array.
4d35d856 792 return ($result && !ref($result) && $self->_root->{filter_fetch_value})
793 ? $self->_root->{filter_fetch_value}->($result)
cb79ec85 794 : $result;
ffed8b01 795}
796
797sub DELETE {
798 ##
799 # Delete single key/value pair or element given plain key or array index
800 ##
2ac02042 801 my $self = $_[0]->_get_self;
feaf1e6f 802 my $key = $_[1];
ffed8b01 803
ffed8b01 804 my $md5 = $DIGEST_FUNC->($key);
805
806 ##
ffed8b01 807 # Request exclusive lock for writing
808 ##
809 $self->lock( LOCK_EX );
810
261d1296 811 my $tag = $self->_find_bucket_list( $md5 );
ffed8b01 812 if (!$tag) {
813 $self->unlock();
814 return;
815 }
816
817 ##
818 # Delete bucket
819 ##
9020ee8c 820 my $value = $self->{engine}->get_bucket_value($self, $tag, $md5 );
4d35d856 821 if ($value && !ref($value) && $self->_root->{filter_fetch_value}) {
822 $value = $self->_root->{filter_fetch_value}->($value);
3b6a5056 823 }
824
ab0e4957 825 my $result = $self->{engine}->delete_bucket( $self, $tag, $md5 );
ffed8b01 826
827 ##
828 # If this object is an array and the key deleted was on the end of the stack,
829 # decrement the length variable.
830 ##
ffed8b01 831
832 $self->unlock();
833
81d3d316 834 return $value;
ffed8b01 835}
836
837sub EXISTS {
838 ##
839 # Check if a single key or element exists given plain key or array index
840 ##
2ac02042 841 my $self = $_[0]->_get_self;
baa27ab6 842 my $key = $_[1];
ffed8b01 843
ffed8b01 844 my $md5 = $DIGEST_FUNC->($key);
845
846 ##
ffed8b01 847 # Request shared lock for reading
848 ##
849 $self->lock( LOCK_SH );
850
261d1296 851 my $tag = $self->_find_bucket_list( $md5 );
ffed8b01 852
853 ##
854 # For some reason, the built-in exists() function returns '' for false
855 ##
856 if (!$tag) {
857 $self->unlock();
858 return '';
859 }
860
861 ##
862 # Check if bucket exists and return 1 or ''
863 ##
912d50b1 864 my $result = $self->{engine}->bucket_exists( $self, $tag, $md5 ) || '';
ffed8b01 865
866 $self->unlock();
867
868 return $result;
869}
870
871sub CLEAR {
872 ##
873 # Clear all keys from hash, or all elements from array.
874 ##
2ac02042 875 my $self = $_[0]->_get_self;
ffed8b01 876
877 ##
ffed8b01 878 # Request exclusive lock for writing
879 ##
880 $self->lock( LOCK_EX );
881
4d35d856 882 my $fh = $self->_fh;
629df3a3 883
714618f0 884 seek($fh, $self->_base_offset + $self->_root->{file_offset}, SEEK_SET);
629df3a3 885 if (eof $fh) {
ffed8b01 886 $self->unlock();
887 return;
888 }
889
d4b1166e 890 $self->{engine}->create_tag($self, $self->_base_offset, $self->_type, chr(0) x $INDEX_SIZE);
ffed8b01 891
892 $self->unlock();
893
894 return 1;
895}
896
ffed8b01 897##
898# Public method aliases
899##
7f441181 900sub put { (shift)->STORE( @_ ) }
901sub store { (shift)->STORE( @_ ) }
902sub get { (shift)->FETCH( @_ ) }
903sub fetch { (shift)->FETCH( @_ ) }
baa27ab6 904sub delete { (shift)->DELETE( @_ ) }
905sub exists { (shift)->EXISTS( @_ ) }
906sub clear { (shift)->CLEAR( @_ ) }
ffed8b01 907
cc4bef86 908package DBM::Deep::_::Root;
909
910sub new {
911 my $class = shift;
912 my ($args) = @_;
913
914 my $self = bless {
915 file => undef,
916 fh => undef,
714618f0 917 file_offset => 0,
cc4bef86 918 end => 0,
919 autoflush => undef,
920 locking => undef,
cc4bef86 921 debug => undef,
cc4bef86 922 filter_store_key => undef,
923 filter_store_value => undef,
924 filter_fetch_key => undef,
925 filter_fetch_value => undef,
926 autobless => undef,
927 locked => 0,
928 %$args,
929 }, $class;
930
714618f0 931 if ( $self->{fh} && !$self->{file_offset} ) {
932 $self->{file_offset} = tell( $self->{fh} );
933 }
934
cc4bef86 935 return $self;
936}
937
938sub DESTROY {
939 my $self = shift;
940 return unless $self;
941
942 close $self->{fh} if $self->{fh};
943
944 return;
945}
946
ffed8b01 9471;
948
949__END__
950
951=head1 NAME
952
953DBM::Deep - A pure perl multi-level hash/array DBM
954
955=head1 SYNOPSIS
956
957 use DBM::Deep;
958 my $db = DBM::Deep->new( "foo.db" );
959
960 $db->{key} = 'value'; # tie() style
961 print $db->{key};
962
cbaa107d 963 $db->put('key' => 'value'); # OO style
ffed8b01 964 print $db->get('key');
965
966 # true multi-level support
967 $db->{my_complex} = [
968 'hello', { perl => 'rules' },
90f93b43 969 42, 99,
970 ];
ffed8b01 971
972=head1 DESCRIPTION
973
974A unique flat-file database module, written in pure perl. True
975multi-level hash/array support (unlike MLDBM, which is faked), hybrid
976OO / tie() interface, cross-platform FTPable files, and quite fast. Can
977handle millions of keys and unlimited hash levels without significant
978slow-down. Written from the ground-up in pure perl -- this is NOT a
979wrapper around a C-based DBM. Out-of-the-box compatibility with Unix,
980Mac OS X and Windows.
981
982=head1 INSTALLATION
983
90f93b43 984Hopefully you are using Perl's excellent CPAN module, which will download
ffed8b01 985and install the module for you. If not, get the tarball, and run these
986commands:
987
988 tar zxf DBM-Deep-*
989 cd DBM-Deep-*
990 perl Makefile.PL
991 make
992 make test
993 make install
994
995=head1 SETUP
996
997Construction can be done OO-style (which is the recommended way), or using
998Perl's tie() function. Both are examined here.
999
1000=head2 OO CONSTRUCTION
1001
1002The recommended way to construct a DBM::Deep object is to use the new()
1003method, which gets you a blessed, tied hash or array reference.
1004
1005 my $db = DBM::Deep->new( "foo.db" );
1006
1007This opens a new database handle, mapped to the file "foo.db". If this
1008file does not exist, it will automatically be created. DB files are
1009opened in "r+" (read/write) mode, and the type of object returned is a
1010hash, unless otherwise specified (see L<OPTIONS> below).
1011
ffed8b01 1012You can pass a number of options to the constructor to specify things like
1013locking, autoflush, etc. This is done by passing an inline hash:
1014
1015 my $db = DBM::Deep->new(
1016 file => "foo.db",
1017 locking => 1,
1018 autoflush => 1
1019 );
1020
1021Notice that the filename is now specified I<inside> the hash with
1022the "file" parameter, as opposed to being the sole argument to the
1023constructor. This is required if any options are specified.
1024See L<OPTIONS> below for the complete list.
1025
1026
1027
1028You can also start with an array instead of a hash. For this, you must
1029specify the C<type> parameter:
1030
1031 my $db = DBM::Deep->new(
1032 file => "foo.db",
1033 type => DBM::Deep->TYPE_ARRAY
1034 );
1035
1036B<Note:> Specifing the C<type> parameter only takes effect when beginning
1037a new DB file. If you create a DBM::Deep object with an existing file, the
90f93b43 1038C<type> will be loaded from the file header, and an error will be thrown if
1039the wrong type is passed in.
ffed8b01 1040
1041=head2 TIE CONSTRUCTION
1042
90f93b43 1043Alternately, you can create a DBM::Deep handle by using Perl's built-in
1044tie() function. The object returned from tie() can be used to call methods,
1045such as lock() and unlock(), but cannot be used to assign to the DBM::Deep
1046file (as expected with most tie'd objects).
ffed8b01 1047
1048 my %hash;
90f93b43 1049 my $db = tie %hash, "DBM::Deep", "foo.db";
ffed8b01 1050
1051 my @array;
90f93b43 1052 my $db = tie @array, "DBM::Deep", "bar.db";
ffed8b01 1053
1054As with the OO constructor, you can replace the DB filename parameter with
1055a hash containing one or more options (see L<OPTIONS> just below for the
1056complete list).
1057
1058 tie %hash, "DBM::Deep", {
1059 file => "foo.db",
1060 locking => 1,
1061 autoflush => 1
1062 };
1063
1064=head2 OPTIONS
1065
1066There are a number of options that can be passed in when constructing your
1067DBM::Deep objects. These apply to both the OO- and tie- based approaches.
1068
1069=over
1070
1071=item * file
1072
1073Filename of the DB file to link the handle to. You can pass a full absolute
1074filesystem path, partial path, or a plain filename if the file is in the
714618f0 1075current working directory. This is a required parameter (though q.v. fh).
1076
1077=item * fh
1078
1079If you want, you can pass in the fh instead of the file. This is most useful for doing
1080something like:
1081
1082 my $db = DBM::Deep->new( { fh => \*DATA } );
1083
1084You are responsible for making sure that the fh has been opened appropriately for your
1085needs. If you open it read-only and attempt to write, an exception will be thrown. If you
1086open it write-only or append-only, an exception will be thrown immediately as DBM::Deep
1087needs to read from the fh.
1088
1089=item * file_offset
1090
1091This is the offset within the file that the DBM::Deep db starts. Most of the time, you will
1092not need to set this. However, it's there if you want it.
1093
1094If you pass in fh and do not set this, it will be set appropriately.
ffed8b01 1095
ffed8b01 1096=item * type
1097
1098This parameter specifies what type of object to create, a hash or array. Use
1099one of these two constants: C<DBM::Deep-E<gt>TYPE_HASH> or C<DBM::Deep-E<gt>TYPE_ARRAY>.
1100This only takes effect when beginning a new file. This is an optional
1101parameter, and defaults to C<DBM::Deep-E<gt>TYPE_HASH>.
1102
1103=item * locking
1104
1105Specifies whether locking is to be enabled. DBM::Deep uses Perl's Fnctl flock()
1106function to lock the database in exclusive mode for writes, and shared mode for
1107reads. Pass any true value to enable. This affects the base DB handle I<and
1108any child hashes or arrays> that use the same DB file. This is an optional
1109parameter, and defaults to 0 (disabled). See L<LOCKING> below for more.
1110
1111=item * autoflush
1112
90f93b43 1113Specifies whether autoflush is to be enabled on the underlying filehandle.
ffed8b01 1114This obviously slows down write operations, but is required if you may have
37c5bcf0 1115multiple processes accessing the same DB file (also consider enable I<locking>).
1116Pass any true value to enable. This is an optional parameter, and defaults to 0
ffed8b01 1117(disabled).
1118
1119=item * autobless
1120
1121If I<autobless> mode is enabled, DBM::Deep will preserve blessed hashes, and
1122restore them when fetched. This is an B<experimental> feature, and does have
1123side-effects. Basically, when hashes are re-blessed into their original
1124classes, they are no longer blessed into the DBM::Deep class! So you won't be
1125able to call any DBM::Deep methods on them. You have been warned.
1126This is an optional parameter, and defaults to 0 (disabled).
1127
1128=item * filter_*
1129
1130See L<FILTERS> below.
1131
1132=item * debug
1133
1134Setting I<debug> mode will make all errors non-fatal, dump them out to
1135STDERR, and continue on. This is for debugging purposes only, and probably
1136not what you want. This is an optional parameter, and defaults to 0 (disabled).
1137
429e4192 1138B<NOTE>: This parameter is considered deprecated and should not be used anymore.
ffed8b01 1139
1140=back
1141
1142=head1 TIE INTERFACE
1143
1144With DBM::Deep you can access your databases using Perl's standard hash/array
90f93b43 1145syntax. Because all DBM::Deep objects are I<tied> to hashes or arrays, you can
1146treat them as such. DBM::Deep will intercept all reads/writes and direct them
1147to the right place -- the DB file. This has nothing to do with the
1148L<TIE CONSTRUCTION> section above. This simply tells you how to use DBM::Deep
1149using regular hashes and arrays, rather than calling functions like C<get()>
1150and C<put()> (although those work too). It is entirely up to you how to want
1151to access your databases.
ffed8b01 1152
1153=head2 HASHES
1154
1155You can treat any DBM::Deep object like a normal Perl hash reference. Add keys,
1156or even nested hashes (or arrays) using standard Perl syntax:
1157
1158 my $db = DBM::Deep->new( "foo.db" );
1159
1160 $db->{mykey} = "myvalue";
1161 $db->{myhash} = {};
1162 $db->{myhash}->{subkey} = "subvalue";
1163
1164 print $db->{myhash}->{subkey} . "\n";
1165
1166You can even step through hash keys using the normal Perl C<keys()> function:
1167
1168 foreach my $key (keys %$db) {
1169 print "$key: " . $db->{$key} . "\n";
1170 }
1171
1172Remember that Perl's C<keys()> function extracts I<every> key from the hash and
1173pushes them onto an array, all before the loop even begins. If you have an
1174extra large hash, this may exhaust Perl's memory. Instead, consider using
1175Perl's C<each()> function, which pulls keys/values one at a time, using very
1176little memory:
1177
1178 while (my ($key, $value) = each %$db) {
1179 print "$key: $value\n";
1180 }
1181
1182Please note that when using C<each()>, you should always pass a direct
1183hash reference, not a lookup. Meaning, you should B<never> do this:
1184
1185 # NEVER DO THIS
1186 while (my ($key, $value) = each %{$db->{foo}}) { # BAD
1187
1188This causes an infinite loop, because for each iteration, Perl is calling
1189FETCH() on the $db handle, resulting in a "new" hash for foo every time, so
1190it effectively keeps returning the first key over and over again. Instead,
1191assign a temporary variable to C<$db->{foo}>, then pass that to each().
1192
1193=head2 ARRAYS
1194
1195As with hashes, you can treat any DBM::Deep object like a normal Perl array
1196reference. This includes inserting, removing and manipulating elements,
1197and the C<push()>, C<pop()>, C<shift()>, C<unshift()> and C<splice()> functions.
1198The object must have first been created using type C<DBM::Deep-E<gt>TYPE_ARRAY>,
1199or simply be a nested array reference inside a hash. Example:
1200
1201 my $db = DBM::Deep->new(
1202 file => "foo-array.db",
1203 type => DBM::Deep->TYPE_ARRAY
1204 );
1205
1206 $db->[0] = "foo";
1207 push @$db, "bar", "baz";
1208 unshift @$db, "bah";
1209
1210 my $last_elem = pop @$db; # baz
1211 my $first_elem = shift @$db; # bah
1212 my $second_elem = $db->[1]; # bar
1213
1214 my $num_elements = scalar @$db;
1215
1216=head1 OO INTERFACE
1217
1218In addition to the I<tie()> interface, you can also use a standard OO interface
1219to manipulate all aspects of DBM::Deep databases. Each type of object (hash or
1220array) has its own methods, but both types share the following common methods:
1221C<put()>, C<get()>, C<exists()>, C<delete()> and C<clear()>.
1222
1223=over
1224
4d35d856 1225=item * new() / clone()
1226
1227These are the constructor and copy-functions.
1228
90f93b43 1229=item * put() / store()
ffed8b01 1230
1231Stores a new hash key/value pair, or sets an array element value. Takes two
1232arguments, the hash key or array index, and the new value. The value can be
1233a scalar, hash ref or array ref. Returns true on success, false on failure.
1234
1235 $db->put("foo", "bar"); # for hashes
1236 $db->put(1, "bar"); # for arrays
1237
90f93b43 1238=item * get() / fetch()
ffed8b01 1239
1240Fetches the value of a hash key or array element. Takes one argument: the hash
1241key or array index. Returns a scalar, hash ref or array ref, depending on the
1242data type stored.
1243
1244 my $value = $db->get("foo"); # for hashes
1245 my $value = $db->get(1); # for arrays
1246
1247=item * exists()
1248
1249Checks if a hash key or array index exists. Takes one argument: the hash key
1250or array index. Returns true if it exists, false if not.
1251
1252 if ($db->exists("foo")) { print "yay!\n"; } # for hashes
1253 if ($db->exists(1)) { print "yay!\n"; } # for arrays
1254
1255=item * delete()
1256
1257Deletes one hash key/value pair or array element. Takes one argument: the hash
1258key or array index. Returns true on success, false if not found. For arrays,
1259the remaining elements located after the deleted element are NOT moved over.
1260The deleted element is essentially just undefined, which is exactly how Perl's
1261internal arrays work. Please note that the space occupied by the deleted
1262key/value or element is B<not> reused again -- see L<UNUSED SPACE RECOVERY>
1263below for details and workarounds.
1264
1265 $db->delete("foo"); # for hashes
1266 $db->delete(1); # for arrays
1267
1268=item * clear()
1269
1270Deletes B<all> hash keys or array elements. Takes no arguments. No return
1271value. Please note that the space occupied by the deleted keys/values or
1272elements is B<not> reused again -- see L<UNUSED SPACE RECOVERY> below for
1273details and workarounds.
1274
1275 $db->clear(); # hashes or arrays
1276
4d35d856 1277=item * lock() / unlock()
1278
1279q.v. Locking.
1280
1281=item * optimize()
1282
1283Recover lost disk space.
1284
1285=item * import() / export()
1286
1287Data going in and out.
1288
1289=item * set_digest() / set_pack() / set_filter()
1290
1291q.v. adjusting the interal parameters.
1292
ffed8b01 1293=back
1294
1295=head2 HASHES
1296
1297For hashes, DBM::Deep supports all the common methods described above, and the
1298following additional methods: C<first_key()> and C<next_key()>.
1299
1300=over
1301
1302=item * first_key()
1303
1304Returns the "first" key in the hash. As with built-in Perl hashes, keys are
1305fetched in an undefined order (which appears random). Takes no arguments,
1306returns the key as a scalar value.
1307
1308 my $key = $db->first_key();
1309
1310=item * next_key()
1311
1312Returns the "next" key in the hash, given the previous one as the sole argument.
1313Returns undef if there are no more keys to be fetched.
1314
1315 $key = $db->next_key($key);
1316
1317=back
1318
1319Here are some examples of using hashes:
1320
1321 my $db = DBM::Deep->new( "foo.db" );
1322
1323 $db->put("foo", "bar");
1324 print "foo: " . $db->get("foo") . "\n";
1325
1326 $db->put("baz", {}); # new child hash ref
1327 $db->get("baz")->put("buz", "biz");
1328 print "buz: " . $db->get("baz")->get("buz") . "\n";
1329
1330 my $key = $db->first_key();
1331 while ($key) {
1332 print "$key: " . $db->get($key) . "\n";
1333 $key = $db->next_key($key);
1334 }
1335
1336 if ($db->exists("foo")) { $db->delete("foo"); }
1337
1338=head2 ARRAYS
1339
1340For arrays, DBM::Deep supports all the common methods described above, and the
1341following additional methods: C<length()>, C<push()>, C<pop()>, C<shift()>,
1342C<unshift()> and C<splice()>.
1343
1344=over
1345
1346=item * length()
1347
1348Returns the number of elements in the array. Takes no arguments.
1349
1350 my $len = $db->length();
1351
1352=item * push()
1353
1354Adds one or more elements onto the end of the array. Accepts scalars, hash
1355refs or array refs. No return value.
1356
1357 $db->push("foo", "bar", {});
1358
1359=item * pop()
1360
1361Fetches the last element in the array, and deletes it. Takes no arguments.
1362Returns undef if array is empty. Returns the element value.
1363
1364 my $elem = $db->pop();
1365
1366=item * shift()
1367
1368Fetches the first element in the array, deletes it, then shifts all the
1369remaining elements over to take up the space. Returns the element value. This
1370method is not recommended with large arrays -- see L<LARGE ARRAYS> below for
1371details.
1372
1373 my $elem = $db->shift();
1374
1375=item * unshift()
1376
1377Inserts one or more elements onto the beginning of the array, shifting all
1378existing elements over to make room. Accepts scalars, hash refs or array refs.
1379No return value. This method is not recommended with large arrays -- see
1380<LARGE ARRAYS> below for details.
1381
1382 $db->unshift("foo", "bar", {});
1383
1384=item * splice()
1385
1386Performs exactly like Perl's built-in function of the same name. See L<perldoc
1387-f splice> for usage -- it is too complicated to document here. This method is
1388not recommended with large arrays -- see L<LARGE ARRAYS> below for details.
1389
1390=back
1391
1392Here are some examples of using arrays:
1393
1394 my $db = DBM::Deep->new(
1395 file => "foo.db",
1396 type => DBM::Deep->TYPE_ARRAY
1397 );
1398
1399 $db->push("bar", "baz");
1400 $db->unshift("foo");
1401 $db->put(3, "buz");
1402
1403 my $len = $db->length();
1404 print "length: $len\n"; # 4
1405
1406 for (my $k=0; $k<$len; $k++) {
1407 print "$k: " . $db->get($k) . "\n";
1408 }
1409
1410 $db->splice(1, 2, "biz", "baf");
1411
1412 while (my $elem = shift @$db) {
1413 print "shifted: $elem\n";
1414 }
1415
1416=head1 LOCKING
1417
1418Enable automatic file locking by passing a true value to the C<locking>
1419parameter when constructing your DBM::Deep object (see L<SETUP> above).
1420
1421 my $db = DBM::Deep->new(
1422 file => "foo.db",
1423 locking => 1
1424 );
1425
90f93b43 1426This causes DBM::Deep to C<flock()> the underlying filehandle with exclusive
ffed8b01 1427mode for writes, and shared mode for reads. This is required if you have
1428multiple processes accessing the same database file, to avoid file corruption.
1429Please note that C<flock()> does NOT work for files over NFS. See L<DB OVER
1430NFS> below for more.
1431
1432=head2 EXPLICIT LOCKING
1433
1434You can explicitly lock a database, so it remains locked for multiple
1435transactions. This is done by calling the C<lock()> method, and passing an
90f93b43 1436optional lock mode argument (defaults to exclusive mode). This is particularly
ffed8b01 1437useful for things like counters, where the current value needs to be fetched,
1438then incremented, then stored again.
1439
1440 $db->lock();
1441 my $counter = $db->get("counter");
1442 $counter++;
1443 $db->put("counter", $counter);
1444 $db->unlock();
1445
1446 # or...
1447
1448 $db->lock();
1449 $db->{counter}++;
1450 $db->unlock();
1451
1452You can pass C<lock()> an optional argument, which specifies which mode to use
1453(exclusive or shared). Use one of these two constants: C<DBM::Deep-E<gt>LOCK_EX>
1454or C<DBM::Deep-E<gt>LOCK_SH>. These are passed directly to C<flock()>, and are the
1455same as the constants defined in Perl's C<Fcntl> module.
1456
1457 $db->lock( DBM::Deep->LOCK_SH );
1458 # something here
1459 $db->unlock();
1460
ffed8b01 1461=head1 IMPORTING/EXPORTING
1462
1463You can import existing complex structures by calling the C<import()> method,
1464and export an entire database into an in-memory structure using the C<export()>
1465method. Both are examined here.
1466
1467=head2 IMPORTING
1468
1469Say you have an existing hash with nested hashes/arrays inside it. Instead of
1470walking the structure and adding keys/elements to the database as you go,
1471simply pass a reference to the C<import()> method. This recursively adds
1472everything to an existing DBM::Deep object for you. Here is an example:
1473
1474 my $struct = {
1475 key1 => "value1",
1476 key2 => "value2",
1477 array1 => [ "elem0", "elem1", "elem2" ],
1478 hash1 => {
1479 subkey1 => "subvalue1",
1480 subkey2 => "subvalue2"
1481 }
1482 };
1483
1484 my $db = DBM::Deep->new( "foo.db" );
1485 $db->import( $struct );
1486
1487 print $db->{key1} . "\n"; # prints "value1"
1488
1489This recursively imports the entire C<$struct> object into C<$db>, including
1490all nested hashes and arrays. If the DBM::Deep object contains exsiting data,
1491keys are merged with the existing ones, replacing if they already exist.
1492The C<import()> method can be called on any database level (not just the base
1493level), and works with both hash and array DB types.
1494
ffed8b01 1495B<Note:> Make sure your existing structure has no circular references in it.
1496These will cause an infinite loop when importing.
1497
1498=head2 EXPORTING
1499
1500Calling the C<export()> method on an existing DBM::Deep object will return
1501a reference to a new in-memory copy of the database. The export is done
1502recursively, so all nested hashes/arrays are all exported to standard Perl
1503objects. Here is an example:
1504
1505 my $db = DBM::Deep->new( "foo.db" );
1506
1507 $db->{key1} = "value1";
1508 $db->{key2} = "value2";
1509 $db->{hash1} = {};
1510 $db->{hash1}->{subkey1} = "subvalue1";
1511 $db->{hash1}->{subkey2} = "subvalue2";
1512
1513 my $struct = $db->export();
1514
1515 print $struct->{key1} . "\n"; # prints "value1"
1516
1517This makes a complete copy of the database in memory, and returns a reference
1518to it. The C<export()> method can be called on any database level (not just
1519the base level), and works with both hash and array DB types. Be careful of
1520large databases -- you can store a lot more data in a DBM::Deep object than an
1521in-memory Perl structure.
1522
ffed8b01 1523B<Note:> Make sure your database has no circular references in it.
1524These will cause an infinite loop when exporting.
1525
1526=head1 FILTERS
1527
1528DBM::Deep has a number of hooks where you can specify your own Perl function
1529to perform filtering on incoming or outgoing data. This is a perfect
1530way to extend the engine, and implement things like real-time compression or
1531encryption. Filtering applies to the base DB level, and all child hashes /
1532arrays. Filter hooks can be specified when your DBM::Deep object is first
1533constructed, or by calling the C<set_filter()> method at any time. There are
1534four available filter hooks, described below:
1535
1536=over
1537
1538=item * filter_store_key
1539
1540This filter is called whenever a hash key is stored. It
1541is passed the incoming key, and expected to return a transformed key.
1542
1543=item * filter_store_value
1544
1545This filter is called whenever a hash key or array element is stored. It
1546is passed the incoming value, and expected to return a transformed value.
1547
1548=item * filter_fetch_key
1549
1550This filter is called whenever a hash key is fetched (i.e. via
1551C<first_key()> or C<next_key()>). It is passed the transformed key,
1552and expected to return the plain key.
1553
1554=item * filter_fetch_value
1555
1556This filter is called whenever a hash key or array element is fetched.
1557It is passed the transformed value, and expected to return the plain value.
1558
1559=back
1560
1561Here are the two ways to setup a filter hook:
1562
1563 my $db = DBM::Deep->new(
1564 file => "foo.db",
1565 filter_store_value => \&my_filter_store,
1566 filter_fetch_value => \&my_filter_fetch
1567 );
1568
1569 # or...
1570
1571 $db->set_filter( "filter_store_value", \&my_filter_store );
1572 $db->set_filter( "filter_fetch_value", \&my_filter_fetch );
1573
1574Your filter function will be called only when dealing with SCALAR keys or
1575values. When nested hashes and arrays are being stored/fetched, filtering
1576is bypassed. Filters are called as static functions, passed a single SCALAR
1577argument, and expected to return a single SCALAR value. If you want to
1578remove a filter, set the function reference to C<undef>:
1579
1580 $db->set_filter( "filter_store_value", undef );
1581
1582=head2 REAL-TIME ENCRYPTION EXAMPLE
1583
1584Here is a working example that uses the I<Crypt::Blowfish> module to
1585do real-time encryption / decryption of keys & values with DBM::Deep Filters.
1586Please visit L<http://search.cpan.org/search?module=Crypt::Blowfish> for more
1587on I<Crypt::Blowfish>. You'll also need the I<Crypt::CBC> module.
1588
1589 use DBM::Deep;
1590 use Crypt::Blowfish;
1591 use Crypt::CBC;
1592
1593 my $cipher = Crypt::CBC->new({
1594 'key' => 'my secret key',
1595 'cipher' => 'Blowfish',
1596 'iv' => '$KJh#(}q',
1597 'regenerate_key' => 0,
1598 'padding' => 'space',
1599 'prepend_iv' => 0
1600 });
1601
1602 my $db = DBM::Deep->new(
1603 file => "foo-encrypt.db",
1604 filter_store_key => \&my_encrypt,
1605 filter_store_value => \&my_encrypt,
1606 filter_fetch_key => \&my_decrypt,
1607 filter_fetch_value => \&my_decrypt,
1608 );
1609
1610 $db->{key1} = "value1";
1611 $db->{key2} = "value2";
1612 print "key1: " . $db->{key1} . "\n";
1613 print "key2: " . $db->{key2} . "\n";
1614
1615 undef $db;
1616 exit;
1617
1618 sub my_encrypt {
1619 return $cipher->encrypt( $_[0] );
1620 }
1621 sub my_decrypt {
1622 return $cipher->decrypt( $_[0] );
1623 }
1624
1625=head2 REAL-TIME COMPRESSION EXAMPLE
1626
1627Here is a working example that uses the I<Compress::Zlib> module to do real-time
1628compression / decompression of keys & values with DBM::Deep Filters.
1629Please visit L<http://search.cpan.org/search?module=Compress::Zlib> for
1630more on I<Compress::Zlib>.
1631
1632 use DBM::Deep;
1633 use Compress::Zlib;
1634
1635 my $db = DBM::Deep->new(
1636 file => "foo-compress.db",
1637 filter_store_key => \&my_compress,
1638 filter_store_value => \&my_compress,
1639 filter_fetch_key => \&my_decompress,
1640 filter_fetch_value => \&my_decompress,
1641 );
1642
1643 $db->{key1} = "value1";
1644 $db->{key2} = "value2";
1645 print "key1: " . $db->{key1} . "\n";
1646 print "key2: " . $db->{key2} . "\n";
1647
1648 undef $db;
1649 exit;
1650
1651 sub my_compress {
1652 return Compress::Zlib::memGzip( $_[0] ) ;
1653 }
1654 sub my_decompress {
1655 return Compress::Zlib::memGunzip( $_[0] ) ;
1656 }
1657
1658B<Note:> Filtering of keys only applies to hashes. Array "keys" are
1659actually numerical index numbers, and are not filtered.
1660
1661=head1 ERROR HANDLING
1662
1663Most DBM::Deep methods return a true value for success, and call die() on
95967a5e 1664failure. You can wrap calls in an eval block to catch the die.
ffed8b01 1665
1666 my $db = DBM::Deep->new( "foo.db" ); # create hash
1667 eval { $db->push("foo"); }; # ILLEGAL -- push is array-only call
1668
90f93b43 1669 print $@; # prints error message
429e4192 1670
ffed8b01 1671=head1 LARGEFILE SUPPORT
1672
1673If you have a 64-bit system, and your Perl is compiled with both LARGEFILE
1674and 64-bit support, you I<may> be able to create databases larger than 2 GB.
1675DBM::Deep by default uses 32-bit file offset tags, but these can be changed
1676by calling the static C<set_pack()> method before you do anything else.
1677
1678 DBM::Deep::set_pack(8, 'Q');
1679
1680This tells DBM::Deep to pack all file offsets with 8-byte (64-bit) quad words
1681instead of 32-bit longs. After setting these values your DB files have a
1682theoretical maximum size of 16 XB (exabytes).
1683
ffed8b01 1684B<Note:> Changing these values will B<NOT> work for existing database files.
1685Only change this for new files, and make sure it stays set consistently
1686throughout the file's life. If you do set these values, you can no longer
1687access 32-bit DB files. You can, however, call C<set_pack(4, 'N')> to change
1688back to 32-bit mode.
1689
ffed8b01 1690B<Note:> I have not personally tested files > 2 GB -- all my systems have
1691only a 32-bit Perl. However, I have received user reports that this does
1692indeed work!
1693
1694=head1 LOW-LEVEL ACCESS
1695
90f93b43 1696If you require low-level access to the underlying filehandle that DBM::Deep uses,
4d35d856 1697you can call the C<_fh()> method, which returns the handle:
ffed8b01 1698
4d35d856 1699 my $fh = $db->_fh();
ffed8b01 1700
1701This method can be called on the root level of the datbase, or any child
1702hashes or arrays. All levels share a I<root> structure, which contains things
90f93b43 1703like the filehandle, a reference counter, and all the options specified
ffed8b01 1704when you created the object. You can get access to this root structure by
1705calling the C<root()> method.
1706
4d35d856 1707 my $root = $db->_root();
ffed8b01 1708
1709This is useful for changing options after the object has already been created,
37c5bcf0 1710such as enabling/disabling locking, or debug modes. You can also
ffed8b01 1711store your own temporary user data in this structure (be wary of name
1712collision), which is then accessible from any child hash or array.
1713
1714=head1 CUSTOM DIGEST ALGORITHM
1715
1716DBM::Deep by default uses the I<Message Digest 5> (MD5) algorithm for hashing
1717keys. However you can override this, and use another algorithm (such as SHA-256)
14a3acb6 1718or even write your own. But please note that DBM::Deep currently expects zero
ffed8b01 1719collisions, so your algorithm has to be I<perfect>, so to speak.
1720Collision detection may be introduced in a later version.
1721
1722
1723
1724You can specify a custom digest algorithm by calling the static C<set_digest()>
1725function, passing a reference to a subroutine, and the length of the algorithm's
14a3acb6 1726hashes (in bytes). This is a global static function, which affects ALL DBM::Deep
ffed8b01 1727objects. Here is a working example that uses a 256-bit hash from the
1728I<Digest::SHA256> module. Please see
1729L<http://search.cpan.org/search?module=Digest::SHA256> for more.
1730
1731 use DBM::Deep;
1732 use Digest::SHA256;
1733
1734 my $context = Digest::SHA256::new(256);
1735
1736 DBM::Deep::set_digest( \&my_digest, 32 );
1737
1738 my $db = DBM::Deep->new( "foo-sha.db" );
1739
1740 $db->{key1} = "value1";
1741 $db->{key2} = "value2";
1742 print "key1: " . $db->{key1} . "\n";
1743 print "key2: " . $db->{key2} . "\n";
1744
1745 undef $db;
1746 exit;
1747
1748 sub my_digest {
1749 return substr( $context->hash($_[0]), 0, 32 );
1750 }
1751
1752B<Note:> Your returned digest strings must be B<EXACTLY> the number
1753of bytes you specify in the C<set_digest()> function (in this case 32).
1754
1755=head1 CIRCULAR REFERENCES
1756
1757DBM::Deep has B<experimental> support for circular references. Meaning you
1758can have a nested hash key or array element that points to a parent object.
1759This relationship is stored in the DB file, and is preserved between sessions.
1760Here is an example:
1761
1762 my $db = DBM::Deep->new( "foo.db" );
1763
1764 $db->{foo} = "bar";
1765 $db->{circle} = $db; # ref to self
1766
1767 print $db->{foo} . "\n"; # prints "foo"
1768 print $db->{circle}->{foo} . "\n"; # prints "foo" again
1769
1770One catch is, passing the object to a function that recursively walks the
1771object tree (such as I<Data::Dumper> or even the built-in C<optimize()> or
1772C<export()> methods) will result in an infinite loop. The other catch is,
1773if you fetch the I<key> of a circular reference (i.e. using the C<first_key()>
1774or C<next_key()> methods), you will get the I<target object's key>, not the
1775ref's key. This gets even more interesting with the above example, where
1776the I<circle> key points to the base DB object, which technically doesn't
1777have a key. So I made DBM::Deep return "[base]" as the key name in that
1778special case.
1779
1780=head1 CAVEATS / ISSUES / BUGS
1781
1782This section describes all the known issues with DBM::Deep. It you have found
1783something that is not listed here, please send e-mail to L<jhuckaby@cpan.org>.
1784
1785=head2 UNUSED SPACE RECOVERY
1786
14a3acb6 1787One major caveat with DBM::Deep is that space occupied by existing keys and
ffed8b01 1788values is not recovered when they are deleted. Meaning if you keep deleting
1789and adding new keys, your file will continuously grow. I am working on this,
1790but in the meantime you can call the built-in C<optimize()> method from time to
1791time (perhaps in a crontab or something) to recover all your unused space.
1792
1793 $db->optimize(); # returns true on success
1794
1795This rebuilds the ENTIRE database into a new file, then moves it on top of
1796the original. The new file will have no unused space, thus it will take up as
1797little disk space as possible. Please note that this operation can take
1798a long time for large files, and you need enough disk space to temporarily hold
17992 copies of your DB file. The temporary file is created in the same directory
1800as the original, named with a ".tmp" extension, and is deleted when the
1801operation completes. Oh, and if locking is enabled, the DB is automatically
1802locked for the entire duration of the copy.
1803
ffed8b01 1804B<WARNING:> Only call optimize() on the top-level node of the database, and
14a3acb6 1805make sure there are no child references lying around. DBM::Deep keeps a reference
ffed8b01 1806counter, and if it is greater than 1, optimize() will abort and return undef.
1807
1808=head2 AUTOVIVIFICATION
1809
1810Unfortunately, autovivification doesn't work with tied hashes. This appears to
1811be a bug in Perl's tie() system, as I<Jakob Schmidt> encountered the very same
1812issue with his I<DWH_FIle> module (see L<http://search.cpan.org/search?module=DWH_File>),
1813and it is also mentioned in the BUGS section for the I<MLDBM> module <see
1814L<http://search.cpan.org/search?module=MLDBM>). Basically, on a new db file,
1815this does not work:
1816
1817 $db->{foo}->{bar} = "hello";
1818
1819Since "foo" doesn't exist, you cannot add "bar" to it. You end up with "foo"
1820being an empty hash. Try this instead, which works fine:
1821
1822 $db->{foo} = { bar => "hello" };
1823
1824As of Perl 5.8.7, this bug still exists. I have walked very carefully through
1825the execution path, and Perl indeed passes an empty hash to the STORE() method.
1826Probably a bug in Perl.
1827
1828=head2 FILE CORRUPTION
1829
14a3acb6 1830The current level of error handling in DBM::Deep is minimal. Files I<are> checked
1831for a 32-bit signature when opened, but other corruption in files can cause
1832segmentation faults. DBM::Deep may try to seek() past the end of a file, or get
ffed8b01 1833stuck in an infinite loop depending on the level of corruption. File write
1834operations are not checked for failure (for speed), so if you happen to run
14a3acb6 1835out of disk space, DBM::Deep will probably fail in a bad way. These things will
ffed8b01 1836be addressed in a later version of DBM::Deep.
1837
1838=head2 DB OVER NFS
1839
14a3acb6 1840Beware of using DB files over NFS. DBM::Deep uses flock(), which works well on local
ffed8b01 1841filesystems, but will NOT protect you from file corruption over NFS. I've heard
1842about setting up your NFS server with a locking daemon, then using lockf() to
90f93b43 1843lock your files, but your mileage may vary there as well. From what I
ffed8b01 1844understand, there is no real way to do it. However, if you need access to the
90f93b43 1845underlying filehandle in DBM::Deep for using some other kind of locking scheme like
ffed8b01 1846lockf(), see the L<LOW-LEVEL ACCESS> section above.
1847
1848=head2 COPYING OBJECTS
1849
1850Beware of copying tied objects in Perl. Very strange things can happen.
14a3acb6 1851Instead, use DBM::Deep's C<clone()> method which safely copies the object and
ffed8b01 1852returns a new, blessed, tied hash or array to the same level in the DB.
1853
1854 my $copy = $db->clone();
1855
90f93b43 1856B<Note>: Since clone() here is cloning the object, not the database location, any
1857modifications to either $db or $copy will be visible in both.
1858
ffed8b01 1859=head2 LARGE ARRAYS
1860
1861Beware of using C<shift()>, C<unshift()> or C<splice()> with large arrays.
1862These functions cause every element in the array to move, which can be murder
1863on DBM::Deep, as every element has to be fetched from disk, then stored again in
90f93b43 1864a different location. This will be addressed in the forthcoming version 1.00.
ffed8b01 1865
9be51a89 1866=head2 WRITEONLY FILES
1867
1868If you pass in a filehandle to new(), you may have opened it in either a readonly or
1869writeonly mode. STORE will verify that the filehandle is writable. However, there
1870doesn't seem to be a good way to determine if a filehandle is readable. And, if the
1871filehandle isn't readable, it's not clear what will happen. So, don't do that.
1872
ffed8b01 1873=head1 PERFORMANCE
1874
1875This section discusses DBM::Deep's speed and memory usage.
1876
1877=head2 SPEED
1878
1879Obviously, DBM::Deep isn't going to be as fast as some C-based DBMs, such as
1880the almighty I<BerkeleyDB>. But it makes up for it in features like true
1881multi-level hash/array support, and cross-platform FTPable files. Even so,
1882DBM::Deep is still pretty fast, and the speed stays fairly consistent, even
1883with huge databases. Here is some test data:
1884
1885 Adding 1,000,000 keys to new DB file...
1886
1887 At 100 keys, avg. speed is 2,703 keys/sec
1888 At 200 keys, avg. speed is 2,642 keys/sec
1889 At 300 keys, avg. speed is 2,598 keys/sec
1890 At 400 keys, avg. speed is 2,578 keys/sec
1891 At 500 keys, avg. speed is 2,722 keys/sec
1892 At 600 keys, avg. speed is 2,628 keys/sec
1893 At 700 keys, avg. speed is 2,700 keys/sec
1894 At 800 keys, avg. speed is 2,607 keys/sec
1895 At 900 keys, avg. speed is 2,190 keys/sec
1896 At 1,000 keys, avg. speed is 2,570 keys/sec
1897 At 2,000 keys, avg. speed is 2,417 keys/sec
1898 At 3,000 keys, avg. speed is 1,982 keys/sec
1899 At 4,000 keys, avg. speed is 1,568 keys/sec
1900 At 5,000 keys, avg. speed is 1,533 keys/sec
1901 At 6,000 keys, avg. speed is 1,787 keys/sec
1902 At 7,000 keys, avg. speed is 1,977 keys/sec
1903 At 8,000 keys, avg. speed is 2,028 keys/sec
1904 At 9,000 keys, avg. speed is 2,077 keys/sec
1905 At 10,000 keys, avg. speed is 2,031 keys/sec
1906 At 20,000 keys, avg. speed is 1,970 keys/sec
1907 At 30,000 keys, avg. speed is 2,050 keys/sec
1908 At 40,000 keys, avg. speed is 2,073 keys/sec
1909 At 50,000 keys, avg. speed is 1,973 keys/sec
1910 At 60,000 keys, avg. speed is 1,914 keys/sec
1911 At 70,000 keys, avg. speed is 2,091 keys/sec
1912 At 80,000 keys, avg. speed is 2,103 keys/sec
1913 At 90,000 keys, avg. speed is 1,886 keys/sec
1914 At 100,000 keys, avg. speed is 1,970 keys/sec
1915 At 200,000 keys, avg. speed is 2,053 keys/sec
1916 At 300,000 keys, avg. speed is 1,697 keys/sec
1917 At 400,000 keys, avg. speed is 1,838 keys/sec
1918 At 500,000 keys, avg. speed is 1,941 keys/sec
1919 At 600,000 keys, avg. speed is 1,930 keys/sec
1920 At 700,000 keys, avg. speed is 1,735 keys/sec
1921 At 800,000 keys, avg. speed is 1,795 keys/sec
1922 At 900,000 keys, avg. speed is 1,221 keys/sec
1923 At 1,000,000 keys, avg. speed is 1,077 keys/sec
1924
1925This test was performed on a PowerMac G4 1gHz running Mac OS X 10.3.2 & Perl
19265.8.1, with an 80GB Ultra ATA/100 HD spinning at 7200RPM. The hash keys and
1927values were between 6 - 12 chars in length. The DB file ended up at 210MB.
1928Run time was 12 min 3 sec.
1929
1930=head2 MEMORY USAGE
1931
1932One of the great things about DBM::Deep is that it uses very little memory.
1933Even with huge databases (1,000,000+ keys) you will not see much increased
14a3acb6 1934memory on your process. DBM::Deep relies solely on the filesystem for storing
ffed8b01 1935and fetching data. Here is output from I</usr/bin/top> before even opening a
1936database handle:
1937
1938 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
1939 22831 root 11 0 2716 2716 1296 R 0.0 0.2 0:07 perl
1940
1941Basically the process is taking 2,716K of memory. And here is the same
1942process after storing and fetching 1,000,000 keys:
1943
1944 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
1945 22831 root 14 0 2772 2772 1328 R 0.0 0.2 13:32 perl
1946
1947Notice the memory usage increased by only 56K. Test was performed on a 700mHz
1948x86 box running Linux RedHat 7.2 & Perl 5.6.1.
1949
1950=head1 DB FILE FORMAT
1951
1952In case you were interested in the underlying DB file format, it is documented
1953here in this section. You don't need to know this to use the module, it's just
1954included for reference.
1955
1956=head2 SIGNATURE
1957
1958DBM::Deep files always start with a 32-bit signature to identify the file type.
1959This is at offset 0. The signature is "DPDB" in network byte order. This is
90f93b43 1960checked for when the file is opened and an error will be thrown if it's not found.
ffed8b01 1961
1962=head2 TAG
1963
1964The DBM::Deep file is in a I<tagged format>, meaning each section of the file
1965has a standard header containing the type of data, the length of data, and then
1966the data itself. The type is a single character (1 byte), the length is a
196732-bit unsigned long in network byte order, and the data is, well, the data.
1968Here is how it unfolds:
1969
1970=head2 MASTER INDEX
1971
1972Immediately after the 32-bit file signature is the I<Master Index> record.
1973This is a standard tag header followed by 1024 bytes (in 32-bit mode) or 2048
1974bytes (in 64-bit mode) of data. The type is I<H> for hash or I<A> for array,
1975depending on how the DBM::Deep object was constructed.
1976
ffed8b01 1977The index works by looking at a I<MD5 Hash> of the hash key (or array index
1978number). The first 8-bit char of the MD5 signature is the offset into the
1979index, multipled by 4 in 32-bit mode, or 8 in 64-bit mode. The value of the
1980index element is a file offset of the next tag for the key/element in question,
1981which is usually a I<Bucket List> tag (see below).
1982
ffed8b01 1983The next tag I<could> be another index, depending on how many keys/elements
1984exist. See L<RE-INDEXING> below for details.
1985
1986=head2 BUCKET LIST
1987
1988A I<Bucket List> is a collection of 16 MD5 hashes for keys/elements, plus
1989file offsets to where the actual data is stored. It starts with a standard
1990tag header, with type I<B>, and a data size of 320 bytes in 32-bit mode, or
1991384 bytes in 64-bit mode. Each MD5 hash is stored in full (16 bytes), plus
1992the 32-bit or 64-bit file offset for the I<Bucket> containing the actual data.
1993When the list fills up, a I<Re-Index> operation is performed (See
1994L<RE-INDEXING> below).
1995
1996=head2 BUCKET
1997
1998A I<Bucket> is a tag containing a key/value pair (in hash mode), or a
1999index/value pair (in array mode). It starts with a standard tag header with
2000type I<D> for scalar data (string, binary, etc.), or it could be a nested
2001hash (type I<H>) or array (type I<A>). The value comes just after the tag
2002header. The size reported in the tag header is only for the value, but then,
2003just after the value is another size (32-bit unsigned long) and then the plain
2004key itself. Since the value is likely to be fetched more often than the plain
2005key, I figured it would be I<slightly> faster to store the value first.
2006
ffed8b01 2007If the type is I<H> (hash) or I<A> (array), the value is another I<Master Index>
2008record for the nested structure, where the process begins all over again.
2009
2010=head2 RE-INDEXING
2011
2012After a I<Bucket List> grows to 16 records, its allocated space in the file is
2013exhausted. Then, when another key/element comes in, the list is converted to a
2014new index record. However, this index will look at the next char in the MD5
2015hash, and arrange new Bucket List pointers accordingly. This process is called
2016I<Re-Indexing>. Basically, a new index tag is created at the file EOF, and all
201717 (16 + new one) keys/elements are removed from the old Bucket List and
2018inserted into the new index. Several new Bucket Lists are created in the
2019process, as a new MD5 char from the key is being examined (it is unlikely that
2020the keys will all share the same next char of their MD5s).
2021
ffed8b01 2022Because of the way the I<MD5> algorithm works, it is impossible to tell exactly
2023when the Bucket Lists will turn into indexes, but the first round tends to
2024happen right around 4,000 keys. You will see a I<slight> decrease in
2025performance here, but it picks back up pretty quick (see L<SPEED> above). Then
2026it takes B<a lot> more keys to exhaust the next level of Bucket Lists. It's
2027right around 900,000 keys. This process can continue nearly indefinitely --
2028right up until the point the I<MD5> signatures start colliding with each other,
2029and this is B<EXTREMELY> rare -- like winning the lottery 5 times in a row AND
2030getting struck by lightning while you are walking to cash in your tickets.
2031Theoretically, since I<MD5> hashes are 128-bit values, you I<could> have up to
2032340,282,366,921,000,000,000,000,000,000,000,000,000 keys/elements (I believe
2033this is 340 unodecillion, but don't quote me).
2034
2035=head2 STORING
2036
90f93b43 2037When a new key/element is stored, the key (or index number) is first run through
ffed8b01 2038I<Digest::MD5> to get a 128-bit signature (example, in hex:
2039b05783b0773d894396d475ced9d2f4f6). Then, the I<Master Index> record is checked
37c5bcf0 2040for the first char of the signature (in this case I<b0>). If it does not exist,
ffed8b01 2041a new I<Bucket List> is created for our key (and the next 15 future keys that
2042happen to also have I<b> as their first MD5 char). The entire MD5 is written
2043to the I<Bucket List> along with the offset of the new I<Bucket> record (EOF at
2044this point, unless we are replacing an existing I<Bucket>), where the actual
2045data will be stored.
2046
2047=head2 FETCHING
2048
2049Fetching an existing key/element involves getting a I<Digest::MD5> of the key
2050(or index number), then walking along the indexes. If there are enough
2051keys/elements in this DB level, there might be nested indexes, each linked to
2052a particular char of the MD5. Finally, a I<Bucket List> is pointed to, which
2053contains up to 16 full MD5 hashes. Each is checked for equality to the key in
2054question. If we found a match, the I<Bucket> tag is loaded, where the value and
2055plain key are stored.
2056
ffed8b01 2057Fetching the plain key occurs when calling the I<first_key()> and I<next_key()>
2058methods. In this process the indexes are walked systematically, and each key
2059fetched in increasing MD5 order (which is why it appears random). Once the
b5467b48 2060I<Bucket> is found, the value is skipped and the plain key returned instead.
ffed8b01 2061B<Note:> Do not count on keys being fetched as if the MD5 hashes were
2062alphabetically sorted. This only happens on an index-level -- as soon as the
2063I<Bucket Lists> are hit, the keys will come out in the order they went in --
2064so it's pretty much undefined how the keys will come out -- just like Perl's
2065built-in hashes.
2066
261d1296 2067=head1 CODE COVERAGE
2068
37c5bcf0 2069We use B<Devel::Cover> to test the code coverage of our tests, below is the
90f93b43 2070B<Devel::Cover> report on this module's test suite.
7910cf68 2071
37c5bcf0 2072 ---------------------------- ------ ------ ------ ------ ------ ------ ------
2073 File stmt bran cond sub pod time total
2074 ---------------------------- ------ ------ ------ ------ ------ ------ ------
9be51a89 2075 blib/lib/DBM/Deep.pm 95.2 83.8 70.0 98.2 100.0 58.0 91.0
2076 blib/lib/DBM/Deep/Array.pm 100.0 91.1 100.0 100.0 n/a 26.7 98.0
2077 blib/lib/DBM/Deep/Hash.pm 95.3 80.0 100.0 100.0 n/a 15.3 92.4
2078 Total 96.2 84.8 74.4 98.8 100.0 100.0 92.4
37c5bcf0 2079 ---------------------------- ------ ------ ------ ------ ------ ------ ------
2080
2081=head1 MORE INFORMATION
2082
2083Check out the DBM::Deep Google Group at L<http://groups.google.com/group/DBM-Deep>
2084or send email to L<DBM-Deep@googlegroups.com>.
261d1296 2085
aeeb5497 2086=head1 AUTHORS
ffed8b01 2087
2088Joseph Huckaby, L<jhuckaby@cpan.org>
37c5bcf0 2089
aeeb5497 2090Rob Kinyon, L<rkinyon@cpan.org>
ffed8b01 2091
2092Special thanks to Adam Sah and Rich Gaushell! You know why :-)
2093
2094=head1 SEE ALSO
2095
2096perltie(1), Tie::Hash(3), Digest::MD5(3), Fcntl(3), flock(2), lockf(3), nfs(5),
2097Digest::SHA256(3), Crypt::Blowfish(3), Compress::Zlib(3)
2098
2099=head1 LICENSE
2100
aeeb5497 2101Copyright (c) 2002-2006 Joseph Huckaby. All Rights Reserved.
ffed8b01 2102This is free software, you may use it and distribute it under the
2103same terms as Perl itself.
2104
2105=cut