Commit | Line | Data |
a0d0e21e |
1 | package Benchmark; |
2 | |
f06db76b |
3 | =head1 NAME |
4 | |
8a4f6ac2 |
5 | Benchmark - benchmark running times of Perl code |
431d98c2 |
6 | |
f06db76b |
7 | =head1 SYNOPSIS |
8 | |
f36484b0 |
9 | use Benchmark qw(:all) ; |
10 | |
f06db76b |
11 | timethis ($count, "code"); |
12 | |
523cc92b |
13 | # Use Perl code in strings... |
f06db76b |
14 | timethese($count, { |
15 | 'Name1' => '...code1...', |
16 | 'Name2' => '...code2...', |
17 | }); |
18 | |
523cc92b |
19 | # ... or use subroutine references. |
20 | timethese($count, { |
21 | 'Name1' => sub { ...code1... }, |
22 | 'Name2' => sub { ...code2... }, |
23 | }); |
24 | |
431d98c2 |
25 | # cmpthese can be used both ways as well |
26 | cmpthese($count, { |
27 | 'Name1' => '...code1...', |
28 | 'Name2' => '...code2...', |
29 | }); |
30 | |
31 | cmpthese($count, { |
32 | 'Name1' => sub { ...code1... }, |
33 | 'Name2' => sub { ...code2... }, |
34 | }); |
35 | |
36 | # ...or in two stages |
37 | $results = timethese($count, |
38 | { |
39 | 'Name1' => sub { ...code1... }, |
40 | 'Name2' => sub { ...code2... }, |
41 | }, |
42 | 'none' |
43 | ); |
44 | cmpthese( $results ) ; |
45 | |
f06db76b |
46 | $t = timeit($count, '...other code...') |
47 | print "$count loops of other code took:",timestr($t),"\n"; |
48 | |
431d98c2 |
49 | $t = countit($time, '...other code...') |
50 | $count = $t->iters ; |
51 | print "$count loops of other code took:",timestr($t),"\n"; |
52 | |
f06db76b |
53 | =head1 DESCRIPTION |
54 | |
55 | The Benchmark module encapsulates a number of routines to help you |
56 | figure out how long it takes to execute some code. |
57 | |
8a4f6ac2 |
58 | timethis - run a chunk of code several times |
59 | |
60 | timethese - run several chunks of code several times |
61 | |
62 | cmpthese - print results of timethese as a comparison chart |
63 | |
64 | timeit - run a chunk of code and see how long it goes |
65 | |
66 | countit - see how many times a chunk of code runs in a given time |
67 | |
68 | |
f06db76b |
69 | =head2 Methods |
70 | |
71 | =over 10 |
72 | |
73 | =item new |
74 | |
75 | Returns the current time. Example: |
76 | |
77 | use Benchmark; |
78 | $t0 = new Benchmark; |
79 | # ... your code here ... |
80 | $t1 = new Benchmark; |
81 | $td = timediff($t1, $t0); |
a24a9dfe |
82 | print "the code took:",timestr($td),"\n"; |
f06db76b |
83 | |
84 | =item debug |
85 | |
86 | Enables or disable debugging by setting the C<$Benchmark::Debug> flag: |
87 | |
523cc92b |
88 | debug Benchmark 1; |
f06db76b |
89 | $t = timeit(10, ' 5 ** $Global '); |
523cc92b |
90 | debug Benchmark 0; |
f06db76b |
91 | |
431d98c2 |
92 | =item iters |
93 | |
94 | Returns the number of iterations. |
95 | |
f06db76b |
96 | =back |
97 | |
98 | =head2 Standard Exports |
99 | |
523cc92b |
100 | The following routines will be exported into your namespace |
f06db76b |
101 | if you use the Benchmark module: |
102 | |
103 | =over 10 |
104 | |
105 | =item timeit(COUNT, CODE) |
106 | |
523cc92b |
107 | Arguments: COUNT is the number of times to run the loop, and CODE is |
108 | the code to run. CODE may be either a code reference or a string to |
109 | be eval'd; either way it will be run in the caller's package. |
110 | |
111 | Returns: a Benchmark object. |
112 | |
113 | =item timethis ( COUNT, CODE, [ TITLE, [ STYLE ]] ) |
114 | |
115 | Time COUNT iterations of CODE. CODE may be a string to eval or a |
116 | code reference; either way the CODE will run in the caller's package. |
117 | Results will be printed to STDOUT as TITLE followed by the times. |
118 | TITLE defaults to "timethis COUNT" if none is provided. STYLE |
119 | determines the format of the output, as described for timestr() below. |
120 | |
6ee623d5 |
121 | The COUNT can be zero or negative: this means the I<minimum number of |
122 | CPU seconds> to run. A zero signifies the default of 3 seconds. For |
123 | example to run at least for 10 seconds: |
124 | |
125 | timethis(-10, $code) |
126 | |
127 | or to run two pieces of code tests for at least 3 seconds: |
128 | |
129 | timethese(0, { test1 => '...', test2 => '...'}) |
130 | |
131 | CPU seconds is, in UNIX terms, the user time plus the system time of |
132 | the process itself, as opposed to the real (wallclock) time and the |
133 | time spent by the child processes. Less than 0.1 seconds is not |
134 | accepted (-0.01 as the count, for example, will cause a fatal runtime |
135 | exception). |
136 | |
137 | Note that the CPU seconds is the B<minimum> time: CPU scheduling and |
138 | other operating system factors may complicate the attempt so that a |
139 | little bit more time is spent. The benchmark output will, however, |
140 | also tell the number of C<$code> runs/second, which should be a more |
141 | interesting number than the actually spent seconds. |
142 | |
143 | Returns a Benchmark object. |
144 | |
523cc92b |
145 | =item timethese ( COUNT, CODEHASHREF, [ STYLE ] ) |
f06db76b |
146 | |
523cc92b |
147 | The CODEHASHREF is a reference to a hash containing names as keys |
148 | and either a string to eval or a code reference for each value. |
149 | For each (KEY, VALUE) pair in the CODEHASHREF, this routine will |
150 | call |
f06db76b |
151 | |
523cc92b |
152 | timethis(COUNT, VALUE, KEY, STYLE) |
f06db76b |
153 | |
1d2dff63 |
154 | The routines are called in string comparison order of KEY. |
155 | |
156 | The COUNT can be zero or negative, see timethis(). |
6ee623d5 |
157 | |
3c6312e9 |
158 | Returns a hash of Benchmark objects, keyed by name. |
159 | |
523cc92b |
160 | =item timediff ( T1, T2 ) |
f06db76b |
161 | |
523cc92b |
162 | Returns the difference between two Benchmark times as a Benchmark |
163 | object suitable for passing to timestr(). |
f06db76b |
164 | |
6ee623d5 |
165 | =item timestr ( TIMEDIFF, [ STYLE, [ FORMAT ] ] ) |
f06db76b |
166 | |
523cc92b |
167 | Returns a string that formats the times in the TIMEDIFF object in |
168 | the requested STYLE. TIMEDIFF is expected to be a Benchmark object |
169 | similar to that returned by timediff(). |
170 | |
3c6312e9 |
171 | STYLE can be any of 'all', 'none', 'noc', 'nop' or 'auto'. 'all' shows |
172 | each of the 5 times available ('wallclock' time, user time, system time, |
523cc92b |
173 | user time of children, and system time of children). 'noc' shows all |
174 | except the two children times. 'nop' shows only wallclock and the |
175 | two children times. 'auto' (the default) will act as 'all' unless |
176 | the children times are both zero, in which case it acts as 'noc'. |
3c6312e9 |
177 | 'none' prevents output. |
523cc92b |
178 | |
179 | FORMAT is the L<printf(3)>-style format specifier (without the |
180 | leading '%') to use to print the times. It defaults to '5.2f'. |
f06db76b |
181 | |
182 | =back |
183 | |
184 | =head2 Optional Exports |
185 | |
186 | The following routines will be exported into your namespace |
187 | if you specifically ask that they be imported: |
188 | |
189 | =over 10 |
190 | |
523cc92b |
191 | =item clearcache ( COUNT ) |
192 | |
193 | Clear the cached time for COUNT rounds of the null loop. |
194 | |
195 | =item clearallcache ( ) |
f06db76b |
196 | |
523cc92b |
197 | Clear all cached times. |
f06db76b |
198 | |
ac8eabc1 |
199 | =item cmpthese ( COUT, CODEHASHREF, [ STYLE ] ) |
200 | |
d1083c7a |
201 | =item cmpthese ( RESULTSHASHREF, [ STYLE ] ) |
ac8eabc1 |
202 | |
d1083c7a |
203 | Optionally calls timethese(), then outputs comparison chart. This: |
ac8eabc1 |
204 | |
d1083c7a |
205 | cmpthese( -1, { a => "++\$i", b => "\$i *= 2" } ) ; |
206 | |
207 | outputs a chart like: |
208 | |
209 | Rate b a |
210 | b 2831802/s -- -61% |
211 | a 7208959/s 155% -- |
212 | |
213 | This chart is sorted from slowest to fastest, and shows the percent speed |
214 | difference between each pair of tests. |
215 | |
216 | c<cmpthese> can also be passed the data structure that timethese() returns: |
217 | |
218 | $results = timethese( -1, { a => "++\$i", b => "\$i *= 2" } ) ; |
ac8eabc1 |
219 | cmpthese( $results ); |
220 | |
d1083c7a |
221 | in case you want to see both sets of results. |
222 | |
223 | Returns a reference to an ARRAY of rows, each row is an ARRAY of cells from the |
224 | above chart, including labels. This: |
225 | |
226 | my $rows = cmpthese( -1, { a => '++$i', b => '$i *= 2' }, "none" ); |
227 | |
228 | returns a data structure like: |
229 | |
230 | [ |
231 | [ '', 'Rate', 'b', 'a' ], |
232 | [ 'b', '2885232/s', '--', '-59%' ], |
233 | [ 'a', '7099126/s', '146%', '--' ], |
234 | ] |
235 | |
236 | B<NOTE>: This result value differs from previous versions, which returned |
237 | the C<timethese()> result structure. If you want that, just use the two |
238 | statement C<timethese>...C<cmpthese> idiom shown above. |
239 | |
240 | Incidently, note the variance in the result values between the two examples; |
241 | this is typical of benchmarking. If this were a real benchmark, you would |
242 | probably want to run a lot more iterations. |
ac8eabc1 |
243 | |
244 | =item countit(TIME, CODE) |
245 | |
246 | Arguments: TIME is the minimum length of time to run CODE for, and CODE is |
247 | the code to run. CODE may be either a code reference or a string to |
248 | be eval'd; either way it will be run in the caller's package. |
249 | |
250 | TIME is I<not> negative. countit() will run the loop many times to |
251 | calculate the speed of CODE before running it for TIME. The actual |
252 | time run for will usually be greater than TIME due to system clock |
253 | resolution, so it's best to look at the number of iterations divided |
254 | by the times that you are concerned with, not just the iterations. |
255 | |
256 | Returns: a Benchmark object. |
257 | |
523cc92b |
258 | =item disablecache ( ) |
f06db76b |
259 | |
523cc92b |
260 | Disable caching of timings for the null loop. This will force Benchmark |
261 | to recalculate these timings for each new piece of code timed. |
262 | |
263 | =item enablecache ( ) |
264 | |
265 | Enable caching of timings for the null loop. The time taken for COUNT |
266 | rounds of the null loop will be calculated only once for each |
267 | different COUNT used. |
f06db76b |
268 | |
ac8eabc1 |
269 | =item timesum ( T1, T2 ) |
270 | |
271 | Returns the sum of two Benchmark times as a Benchmark object suitable |
272 | for passing to timestr(). |
273 | |
f06db76b |
274 | =back |
275 | |
276 | =head1 NOTES |
277 | |
278 | The data is stored as a list of values from the time and times |
523cc92b |
279 | functions: |
f06db76b |
280 | |
431d98c2 |
281 | ($real, $user, $system, $children_user, $children_system, $iters) |
f06db76b |
282 | |
283 | in seconds for the whole loop (not divided by the number of rounds). |
284 | |
285 | The timing is done using time(3) and times(3). |
286 | |
287 | Code is executed in the caller's package. |
288 | |
f06db76b |
289 | The time of the null loop (a loop with the same |
290 | number of rounds but empty loop body) is subtracted |
291 | from the time of the real loop. |
292 | |
3c6312e9 |
293 | The null loop times can be cached, the key being the |
f06db76b |
294 | number of rounds. The caching can be controlled using |
295 | calls like these: |
296 | |
523cc92b |
297 | clearcache($key); |
f06db76b |
298 | clearallcache(); |
299 | |
523cc92b |
300 | disablecache(); |
f06db76b |
301 | enablecache(); |
302 | |
3c6312e9 |
303 | Caching is off by default, as it can (usually slightly) decrease |
304 | accuracy and does not usually noticably affect runtimes. |
305 | |
54e82ce5 |
306 | =head1 EXAMPLES |
307 | |
308 | For example, |
309 | |
14393033 |
310 | use Benchmark qw( cmpthese ) ; |
311 | $x = 3; |
312 | cmpthese( -5, { |
313 | a => sub{$x*$x}, |
314 | b => sub{$x**2}, |
315 | } ); |
54e82ce5 |
316 | |
317 | outputs something like this: |
318 | |
319 | Benchmark: running a, b, each for at least 5 CPU seconds... |
14393033 |
320 | Rate b a |
321 | b 1559428/s -- -62% |
322 | a 4152037/s 166% -- |
323 | |
54e82ce5 |
324 | |
325 | while |
326 | |
14393033 |
327 | use Benchmark qw( timethese cmpthese ) ; |
328 | $x = 3; |
329 | $r = timethese( -5, { |
330 | a => sub{$x*$x}, |
331 | b => sub{$x**2}, |
332 | } ); |
333 | cmpthese $r; |
54e82ce5 |
334 | |
335 | outputs something like this: |
336 | |
14393033 |
337 | Benchmark: running a, b, each for at least 5 CPU seconds... |
338 | a: 10 wallclock secs ( 5.14 usr + 0.13 sys = 5.27 CPU) @ 3835055.60/s (n=20210743) |
339 | b: 5 wallclock secs ( 5.41 usr + 0.00 sys = 5.41 CPU) @ 1574944.92/s (n=8520452) |
340 | Rate b a |
341 | b 1574945/s -- -59% |
342 | a 3835056/s 144% -- |
54e82ce5 |
343 | |
344 | |
f06db76b |
345 | =head1 INHERITANCE |
346 | |
347 | Benchmark inherits from no other class, except of course |
348 | for Exporter. |
349 | |
350 | =head1 CAVEATS |
351 | |
80eab818 |
352 | Comparing eval'd strings with code references will give you |
431d98c2 |
353 | inaccurate results: a code reference will show a slightly slower |
80eab818 |
354 | execution time than the equivalent eval'd string. |
355 | |
f06db76b |
356 | The real time timing is done using time(2) and |
357 | the granularity is therefore only one second. |
358 | |
359 | Short tests may produce negative figures because perl |
523cc92b |
360 | can appear to take longer to execute the empty loop |
361 | than a short test; try: |
f06db76b |
362 | |
363 | timethis(100,'1'); |
364 | |
365 | The system time of the null loop might be slightly |
366 | more than the system time of the loop with the actual |
a24a9dfe |
367 | code and therefore the difference might end up being E<lt> 0. |
f06db76b |
368 | |
8a4f6ac2 |
369 | =head1 SEE ALSO |
370 | |
371 | L<Devel::DProf> - a Perl code profiler |
372 | |
f06db76b |
373 | =head1 AUTHORS |
374 | |
5aabfad6 |
375 | Jarkko Hietaniemi <F<jhi@iki.fi>>, Tim Bunce <F<Tim.Bunce@ig.co.uk>> |
f06db76b |
376 | |
377 | =head1 MODIFICATION HISTORY |
378 | |
379 | September 8th, 1994; by Tim Bunce. |
380 | |
523cc92b |
381 | March 28th, 1997; by Hugo van der Sanden: added support for code |
382 | references and the already documented 'debug' method; revamped |
383 | documentation. |
f06db76b |
384 | |
6ee623d5 |
385 | April 04-07th, 1997: by Jarkko Hietaniemi, added the run-for-some-time |
386 | functionality. |
387 | |
3c6312e9 |
388 | September, 1999; by Barrie Slaymaker: math fixes and accuracy and |
389 | efficiency tweaks. Added cmpthese(). A result is now returned from |
431d98c2 |
390 | timethese(). Exposed countit() (was runfor()). |
3c6312e9 |
391 | |
0e74ff8e |
392 | December, 2001; by Nicholas Clark: make timestr() recognise the style 'none' |
393 | and return an empty string. If cmpthese is calling timethese, make it pass the |
394 | style in. (so that 'none' will suppress output). Make sub new dump its |
395 | debugging output to STDERR, to be consistent with everything else. |
396 | All bugs found while writing a regression test. |
397 | |
523cc92b |
398 | =cut |
a0d0e21e |
399 | |
3f943bd9 |
400 | # evaluate something in a clean lexical environment |
401 | sub _doeval { eval shift } |
402 | |
403 | # |
404 | # put any lexicals at file scope AFTER here |
405 | # |
406 | |
4aa0a1f7 |
407 | use Carp; |
a0d0e21e |
408 | use Exporter; |
409 | @ISA=(Exporter); |
ac8eabc1 |
410 | @EXPORT=qw(timeit timethis timethese timediff timestr); |
411 | @EXPORT_OK=qw(timesum cmpthese countit |
412 | clearcache clearallcache disablecache enablecache); |
f36484b0 |
413 | %EXPORT_TAGS=( all => [ @EXPORT, @EXPORT_OK ] ) ; |
a0d0e21e |
414 | |
0e74ff8e |
415 | $VERSION = 1.04; |
8a4f6ac2 |
416 | |
a0d0e21e |
417 | &init; |
418 | |
419 | sub init { |
420 | $debug = 0; |
421 | $min_count = 4; |
422 | $min_cpu = 0.4; |
423 | $defaultfmt = '5.2f'; |
424 | $defaultstyle = 'auto'; |
425 | # The cache can cause a slight loss of sys time accuracy. If a |
426 | # user does many tests (>10) with *very* large counts (>10000) |
427 | # or works on a very slow machine the cache may be useful. |
428 | &disablecache; |
429 | &clearallcache; |
430 | } |
431 | |
523cc92b |
432 | sub debug { $debug = ($_[1] != 0); } |
433 | |
bba8fca5 |
434 | # The cache needs two branches: 's' for strings and 'c' for code. The |
435 | # emtpy loop is different in these two cases. |
436 | sub clearcache { delete $cache{"$_[0]c"}; delete $cache{"$_[0]s"}; } |
a0d0e21e |
437 | sub clearallcache { %cache = (); } |
438 | sub enablecache { $cache = 1; } |
439 | sub disablecache { $cache = 0; } |
440 | |
a0d0e21e |
441 | # --- Functions to process the 'time' data type |
442 | |
6ee623d5 |
443 | sub new { my @t = (time, times, @_ == 2 ? $_[1] : 0); |
0e74ff8e |
444 | print STDERR "new=@t\n" if $debug; |
6ee623d5 |
445 | bless \@t; } |
a0d0e21e |
446 | |
447 | sub cpu_p { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps ; } |
448 | sub cpu_c { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $cu+$cs ; } |
449 | sub cpu_a { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $pu+$ps+$cu+$cs ; } |
450 | sub real { my($r,$pu,$ps,$cu,$cs) = @{$_[0]}; $r ; } |
431d98c2 |
451 | sub iters { $_[0]->[5] ; } |
a0d0e21e |
452 | |
523cc92b |
453 | sub timediff { |
a0d0e21e |
454 | my($a, $b) = @_; |
523cc92b |
455 | my @r; |
3f943bd9 |
456 | for (my $i=0; $i < @$a; ++$i) { |
a0d0e21e |
457 | push(@r, $a->[$i] - $b->[$i]); |
458 | } |
459 | bless \@r; |
460 | } |
461 | |
705cc255 |
462 | sub timesum { |
463 | my($a, $b) = @_; |
464 | my @r; |
465 | for (my $i=0; $i < @$a; ++$i) { |
466 | push(@r, $a->[$i] + $b->[$i]); |
467 | } |
468 | bless \@r; |
469 | } |
470 | |
523cc92b |
471 | sub timestr { |
a0d0e21e |
472 | my($tr, $style, $f) = @_; |
523cc92b |
473 | my @t = @$tr; |
6ee623d5 |
474 | warn "bad time value (@t)" unless @t==6; |
475 | my($r, $pu, $ps, $cu, $cs, $n) = @t; |
ce9550df |
476 | my($pt, $ct, $tt) = ($tr->cpu_p, $tr->cpu_c, $tr->cpu_a); |
523cc92b |
477 | $f = $defaultfmt unless defined $f; |
a0d0e21e |
478 | # format a time in the required style, other formats may be added here |
80eab818 |
479 | $style ||= $defaultstyle; |
0e74ff8e |
480 | return '' if $style eq 'none'; |
523cc92b |
481 | $style = ($ct>0) ? 'all' : 'noc' if $style eq 'auto'; |
482 | my $s = "@t $style"; # default for unknown style |
7be077a2 |
483 | $s=sprintf("%2d wallclock secs (%$f usr %$f sys + %$f cusr %$f csys = %$f CPU)", |
ce9550df |
484 | $r,$pu,$ps,$cu,$cs,$tt) if $style eq 'all'; |
7be077a2 |
485 | $s=sprintf("%2d wallclock secs (%$f usr + %$f sys = %$f CPU)", |
486 | $r,$pu,$ps,$pt) if $style eq 'noc'; |
487 | $s=sprintf("%2d wallclock secs (%$f cusr + %$f csys = %$f CPU)", |
488 | $r,$cu,$cs,$ct) if $style eq 'nop'; |
cc31225e |
489 | $s .= sprintf(" @ %$f/s (n=$n)", $n / ( $pu + $ps )) if $n && $pu+$ps; |
a0d0e21e |
490 | $s; |
491 | } |
523cc92b |
492 | |
493 | sub timedebug { |
a0d0e21e |
494 | my($msg, $t) = @_; |
523cc92b |
495 | print STDERR "$msg",timestr($t),"\n" if $debug; |
a0d0e21e |
496 | } |
497 | |
a0d0e21e |
498 | # --- Functions implementing low-level support for timing loops |
499 | |
500 | sub runloop { |
501 | my($n, $c) = @_; |
4aa0a1f7 |
502 | |
503 | $n+=0; # force numeric now, so garbage won't creep into the eval |
523cc92b |
504 | croak "negative loopcount $n" if $n<0; |
505 | confess "Usage: runloop(number, [string | coderef])" unless defined $c; |
a0d0e21e |
506 | my($t0, $t1, $td); # before, after, difference |
507 | |
508 | # find package of caller so we can execute code there |
523cc92b |
509 | my($curpack) = caller(0); |
510 | my($i, $pack)= 0; |
a0d0e21e |
511 | while (($pack) = caller(++$i)) { |
512 | last if $pack ne $curpack; |
513 | } |
514 | |
3f943bd9 |
515 | my ($subcode, $subref); |
516 | if (ref $c eq 'CODE') { |
517 | $subcode = "sub { for (1 .. $n) { local \$_; package $pack; &\$c; } }"; |
518 | $subref = eval $subcode; |
519 | } |
520 | else { |
521 | $subcode = "sub { for (1 .. $n) { local \$_; package $pack; $c;} }"; |
522 | $subref = _doeval($subcode); |
523 | } |
4aa0a1f7 |
524 | croak "runloop unable to compile '$c': $@\ncode: $subcode\n" if $@; |
523cc92b |
525 | print STDERR "runloop $n '$subcode'\n" if $debug; |
a0d0e21e |
526 | |
3c6312e9 |
527 | # Wait for the user timer to tick. This makes the error range more like |
528 | # -0.01, +0. If we don't wait, then it's more like -0.01, +0.01. This |
529 | # may not seem important, but it significantly reduces the chances of |
530 | # getting a too low initial $n in the initial, 'find the minimum' loop |
431d98c2 |
531 | # in &countit. This, in turn, can reduce the number of calls to |
bba8fca5 |
532 | # &runloop a lot, and thus reduce additive errors. |
533 | my $tbase = Benchmark->new(0)->[1]; |
277427cf |
534 | while ( ( $t0 = Benchmark->new(0) )->[1] == $tbase ) {} ; |
a0d0e21e |
535 | &$subref; |
6ee623d5 |
536 | $t1 = Benchmark->new($n); |
a0d0e21e |
537 | $td = &timediff($t1, $t0); |
a0d0e21e |
538 | timedebug("runloop:",$td); |
539 | $td; |
540 | } |
541 | |
542 | |
543 | sub timeit { |
544 | my($n, $code) = @_; |
545 | my($wn, $wc, $wd); |
546 | |
547 | printf STDERR "timeit $n $code\n" if $debug; |
3c6312e9 |
548 | my $cache_key = $n . ( ref( $code ) ? 'c' : 's' ); |
bba8fca5 |
549 | if ($cache && exists $cache{$cache_key} ) { |
550 | $wn = $cache{$cache_key}; |
523cc92b |
551 | } else { |
6bf773bc |
552 | $wn = &runloop($n, ref( $code ) ? sub { } : '' ); |
3c6312e9 |
553 | # Can't let our baseline have any iterations, or they get subtracted |
554 | # out of the result. |
555 | $wn->[5] = 0; |
bba8fca5 |
556 | $cache{$cache_key} = $wn; |
a0d0e21e |
557 | } |
558 | |
559 | $wc = &runloop($n, $code); |
560 | |
561 | $wd = timediff($wc, $wn); |
a0d0e21e |
562 | timedebug("timeit: ",$wc); |
563 | timedebug(" - ",$wn); |
564 | timedebug(" = ",$wd); |
565 | |
566 | $wd; |
567 | } |
568 | |
6ee623d5 |
569 | |
570 | my $default_for = 3; |
571 | my $min_for = 0.1; |
572 | |
3c6312e9 |
573 | |
431d98c2 |
574 | sub countit { |
575 | my ( $tmax, $code ) = @_; |
6ee623d5 |
576 | |
577 | if ( not defined $tmax or $tmax == 0 ) { |
578 | $tmax = $default_for; |
579 | } elsif ( $tmax < 0 ) { |
580 | $tmax = -$tmax; |
581 | } |
582 | |
431d98c2 |
583 | die "countit($tmax, ...): timelimit cannot be less than $min_for.\n" |
6ee623d5 |
584 | if $tmax < $min_for; |
585 | |
3c6312e9 |
586 | my ($n, $tc); |
6ee623d5 |
587 | |
bba8fca5 |
588 | # First find the minimum $n that gives a significant timing. |
3c6312e9 |
589 | for ($n = 1; ; $n *= 2 ) { |
590 | my $td = timeit($n, $code); |
591 | $tc = $td->[1] + $td->[2]; |
592 | last if $tc > 0.1; |
593 | } |
6ee623d5 |
594 | |
3c6312e9 |
595 | my $nmin = $n; |
596 | |
597 | # Get $n high enough that we can guess the final $n with some accuracy. |
598 | my $tpra = 0.1 * $tmax; # Target/time practice. |
599 | while ( $tc < $tpra ) { |
600 | # The 5% fudge is to keep us from iterating again all |
601 | # that often (this speeds overall responsiveness when $tmax is big |
602 | # and we guess a little low). This does not noticably affect |
603 | # accuracy since we're not couting these times. |
604 | $n = int( $tpra * 1.05 * $n / $tc ); # Linear approximation. |
605 | my $td = timeit($n, $code); |
c5d57293 |
606 | my $new_tc = $td->[1] + $td->[2]; |
607 | # Make sure we are making progress. |
608 | $tc = $new_tc > 1.2 * $tc ? $new_tc : 1.2 * $tc; |
6ee623d5 |
609 | } |
610 | |
3c6312e9 |
611 | # Now, do the 'for real' timing(s), repeating until we exceed |
612 | # the max. |
613 | my $ntot = 0; |
614 | my $rtot = 0; |
615 | my $utot = 0.0; |
616 | my $stot = 0.0; |
617 | my $cutot = 0.0; |
618 | my $cstot = 0.0; |
619 | my $ttot = 0.0; |
620 | |
621 | # The 5% fudge is because $n is often a few % low even for routines |
622 | # with stable times and avoiding extra timeit()s is nice for |
623 | # accuracy's sake. |
624 | $n = int( $n * ( 1.05 * $tmax / $tc ) ); |
625 | |
626 | while () { |
627 | my $td = timeit($n, $code); |
628 | $ntot += $n; |
629 | $rtot += $td->[0]; |
630 | $utot += $td->[1]; |
631 | $stot += $td->[2]; |
6ee623d5 |
632 | $cutot += $td->[3]; |
633 | $cstot += $td->[4]; |
3c6312e9 |
634 | $ttot = $utot + $stot; |
635 | last if $ttot >= $tmax; |
6ee623d5 |
636 | |
c5d57293 |
637 | $ttot = 0.01 if $ttot < 0.01; |
3c6312e9 |
638 | my $r = $tmax / $ttot - 1; # Linear approximation. |
bba8fca5 |
639 | $n = int( $r * $ntot ); |
6ee623d5 |
640 | $n = $nmin if $n < $nmin; |
6ee623d5 |
641 | } |
642 | |
643 | return bless [ $rtot, $utot, $stot, $cutot, $cstot, $ntot ]; |
644 | } |
645 | |
a0d0e21e |
646 | # --- Functions implementing high-level time-then-print utilities |
647 | |
6ee623d5 |
648 | sub n_to_for { |
649 | my $n = shift; |
650 | return $n == 0 ? $default_for : $n < 0 ? -$n : undef; |
651 | } |
652 | |
a0d0e21e |
653 | sub timethis{ |
654 | my($n, $code, $title, $style) = @_; |
6ee623d5 |
655 | my($t, $for, $forn); |
656 | |
657 | if ( $n > 0 ) { |
658 | croak "non-integer loopcount $n, stopped" if int($n)<$n; |
659 | $t = timeit($n, $code); |
660 | $title = "timethis $n" unless defined $title; |
661 | } else { |
662 | $fort = n_to_for( $n ); |
431d98c2 |
663 | $t = countit( $fort, $code ); |
6ee623d5 |
664 | $title = "timethis for $fort" unless defined $title; |
665 | $forn = $t->[-1]; |
666 | } |
523cc92b |
667 | local $| = 1; |
523cc92b |
668 | $style = "" unless defined $style; |
3c6312e9 |
669 | printf("%10s: ", $title) unless $style eq 'none'; |
670 | print timestr($t, $style, $defaultfmt),"\n" unless $style eq 'none'; |
6ee623d5 |
671 | |
672 | $n = $forn if defined $forn; |
523cc92b |
673 | |
a0d0e21e |
674 | # A conservative warning to spot very silly tests. |
675 | # Don't assume that your benchmark is ok simply because |
676 | # you don't get this warning! |
677 | print " (warning: too few iterations for a reliable count)\n" |
523cc92b |
678 | if $n < $min_count |
a0d0e21e |
679 | || ($t->real < 1 && $n < 1000) |
523cc92b |
680 | || $t->cpu_a < $min_cpu; |
a0d0e21e |
681 | $t; |
682 | } |
683 | |
a0d0e21e |
684 | sub timethese{ |
685 | my($n, $alt, $style) = @_; |
686 | die "usage: timethese(count, { 'Name1'=>'code1', ... }\n" |
687 | unless ref $alt eq HASH; |
523cc92b |
688 | my @names = sort keys %$alt; |
689 | $style = "" unless defined $style; |
3c6312e9 |
690 | print "Benchmark: " unless $style eq 'none'; |
6ee623d5 |
691 | if ( $n > 0 ) { |
692 | croak "non-integer loopcount $n, stopped" if int($n)<$n; |
3c6312e9 |
693 | print "timing $n iterations of" unless $style eq 'none'; |
6ee623d5 |
694 | } else { |
3c6312e9 |
695 | print "running" unless $style eq 'none'; |
6ee623d5 |
696 | } |
3c6312e9 |
697 | print " ", join(', ',@names) unless $style eq 'none'; |
6ee623d5 |
698 | unless ( $n > 0 ) { |
699 | my $for = n_to_for( $n ); |
df7779cf |
700 | print ", each" if $n > 1 && $style ne 'none'; |
701 | print " for at least $for CPU seconds" unless $style eq 'none'; |
6ee623d5 |
702 | } |
3c6312e9 |
703 | print "...\n" unless $style eq 'none'; |
523cc92b |
704 | |
705 | # we could save the results in an array and produce a summary here |
a0d0e21e |
706 | # sum, min, max, avg etc etc |
3c6312e9 |
707 | my %results; |
4dbb2df9 |
708 | foreach my $name (@names) { |
3c6312e9 |
709 | $results{$name} = timethis ($n, $alt -> {$name}, $name, $style); |
4dbb2df9 |
710 | } |
3c6312e9 |
711 | |
712 | return \%results; |
a0d0e21e |
713 | } |
714 | |
3c6312e9 |
715 | sub cmpthese{ |
0e74ff8e |
716 | my ($results, $style) = ref $_[0] ? @_ : ( timethese( @_[0,1,2] ), $_[2] ) ; |
3c6312e9 |
717 | |
d1083c7a |
718 | $style = "" unless defined $style; |
3c6312e9 |
719 | |
720 | # Flatten in to an array of arrays with the name as the first field |
721 | my @vals = map{ [ $_, @{$results->{$_}} ] } keys %$results; |
722 | |
723 | for (@vals) { |
724 | # The epsilon fudge here is to prevent div by 0. Since clock |
725 | # resolutions are much larger, it's below the noise floor. |
726 | my $rate = $_->[6] / ( $_->[2] + $_->[3] + 0.000000000000001 ); |
727 | $_->[7] = $rate; |
728 | } |
729 | |
730 | # Sort by rate |
731 | @vals = sort { $a->[7] <=> $b->[7] } @vals; |
732 | |
733 | # If more than half of the rates are greater than one... |
734 | my $display_as_rate = $vals[$#vals>>1]->[7] > 1; |
735 | |
736 | my @rows; |
737 | my @col_widths; |
738 | |
739 | my @top_row = ( |
740 | '', |
741 | $display_as_rate ? 'Rate' : 's/iter', |
742 | map { $_->[0] } @vals |
743 | ); |
744 | |
745 | push @rows, \@top_row; |
746 | @col_widths = map { length( $_ ) } @top_row; |
747 | |
748 | # Build the data rows |
749 | # We leave the last column in even though it never has any data. Perhaps |
750 | # it should go away. Also, perhaps a style for a single column of |
751 | # percentages might be nice. |
752 | for my $row_val ( @vals ) { |
753 | my @row; |
754 | |
755 | # Column 0 = test name |
756 | push @row, $row_val->[0]; |
757 | $col_widths[0] = length( $row_val->[0] ) |
758 | if length( $row_val->[0] ) > $col_widths[0]; |
759 | |
760 | # Column 1 = performance |
761 | my $row_rate = $row_val->[7]; |
762 | |
763 | # We assume that we'll never get a 0 rate. |
764 | my $a = $display_as_rate ? $row_rate : 1 / $row_rate; |
765 | |
766 | # Only give a few decimal places before switching to sci. notation, |
767 | # since the results aren't usually that accurate anyway. |
768 | my $format = |
769 | $a >= 100 ? |
770 | "%0.0f" : |
771 | $a >= 10 ? |
772 | "%0.1f" : |
773 | $a >= 1 ? |
774 | "%0.2f" : |
775 | $a >= 0.1 ? |
776 | "%0.3f" : |
777 | "%0.2e"; |
778 | |
779 | $format .= "/s" |
780 | if $display_as_rate; |
781 | # Using $b here due to optimizing bug in _58 through _61 |
782 | my $b = sprintf( $format, $a ); |
783 | push @row, $b; |
784 | $col_widths[1] = length( $b ) |
785 | if length( $b ) > $col_widths[1]; |
786 | |
787 | # Columns 2..N = performance ratios |
788 | my $skip_rest = 0; |
789 | for ( my $col_num = 0 ; $col_num < @vals ; ++$col_num ) { |
790 | my $col_val = $vals[$col_num]; |
791 | my $out; |
792 | if ( $skip_rest ) { |
793 | $out = ''; |
794 | } |
795 | elsif ( $col_val->[0] eq $row_val->[0] ) { |
796 | $out = "--"; |
797 | # $skip_rest = 1; |
798 | } |
799 | else { |
800 | my $col_rate = $col_val->[7]; |
801 | $out = sprintf( "%.0f%%", 100*$row_rate/$col_rate - 100 ); |
802 | } |
803 | push @row, $out; |
804 | $col_widths[$col_num+2] = length( $out ) |
805 | if length( $out ) > $col_widths[$col_num+2]; |
806 | |
807 | # A little wierdness to set the first column width properly |
808 | $col_widths[$col_num+2] = length( $col_val->[0] ) |
809 | if length( $col_val->[0] ) > $col_widths[$col_num+2]; |
810 | } |
811 | push @rows, \@row; |
812 | } |
813 | |
d1083c7a |
814 | return \@rows if $style eq "none"; |
815 | |
3c6312e9 |
816 | # Equalize column widths in the chart as much as possible without |
817 | # exceeding 80 characters. This does not use or affect cols 0 or 1. |
818 | my @sorted_width_refs = |
819 | sort { $$a <=> $$b } map { \$_ } @col_widths[2..$#col_widths]; |
820 | my $max_width = ${$sorted_width_refs[-1]}; |
821 | |
277427cf |
822 | my $total = @col_widths - 1 ; |
3c6312e9 |
823 | for ( @col_widths ) { $total += $_ } |
824 | |
825 | STRETCHER: |
826 | while ( $total < 80 ) { |
827 | my $min_width = ${$sorted_width_refs[0]}; |
828 | last |
829 | if $min_width == $max_width; |
830 | for ( @sorted_width_refs ) { |
831 | last |
832 | if $$_ > $min_width; |
833 | ++$$_; |
834 | ++$total; |
835 | last STRETCHER |
836 | if $total >= 80; |
837 | } |
838 | } |
839 | |
840 | # Dump the output |
841 | my $format = join( ' ', map { "%${_}s" } @col_widths ) . "\n"; |
842 | substr( $format, 1, 0 ) = '-'; |
843 | for ( @rows ) { |
844 | printf $format, @$_; |
845 | } |
846 | |
d1083c7a |
847 | return \@rows ; |
3c6312e9 |
848 | } |
849 | |
850 | |
a0d0e21e |
851 | 1; |