Patch to fix the problem enclosed.
[p5sagit/p5-mst-13.2.git] / ext / Compress-Raw-Zlib / zlib-src / trees.c
CommitLineData
25f0751f 1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2005 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
11 *
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 * REFERENCES
19 *
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26 *
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32/* @(#) $Id$ */
33
34/* #define GEN_TREES_H */
35
36#include "deflate.h"
37
38#ifdef DEBUG
39# include <ctype.h>
40#endif
41
42/* ===========================================================================
43 * Constants
44 */
45
46#define MAX_BL_BITS 7
47/* Bit length codes must not exceed MAX_BL_BITS bits */
48
49#define END_BLOCK 256
50/* end of block literal code */
51
52#define REP_3_6 16
53/* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55#define REPZ_3_10 17
56/* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58#define REPZ_11_138 18
59/* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
70local const uch bl_order[BL_CODES]
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72/* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76#define Buf_size (8 * 2*sizeof(char))
77/* Number of bits used within bi_buf. (bi_buf might be implemented on
78 * more than 16 bits on some systems.)
79 */
80
81/* ===========================================================================
82 * Local data. These are initialized only once.
83 */
84
85#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86
87#if defined(GEN_TREES_H) || !defined(STDC)
88/* non ANSI compilers may not accept trees.h */
89
90local ct_data static_ltree[L_CODES+2];
91/* The static literal tree. Since the bit lengths are imposed, there is no
92 * need for the L_CODES extra codes used during heap construction. However
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94 * below).
95 */
96
97local ct_data static_dtree[D_CODES];
98/* The static distance tree. (Actually a trivial tree since all codes use
99 * 5 bits.)
100 */
101
102uch _dist_code[DIST_CODE_LEN];
103/* Distance codes. The first 256 values correspond to the distances
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of
105 * the 15 bit distances.
106 */
107
108uch _length_code[MAX_MATCH-MIN_MATCH+1];
109/* length code for each normalized match length (0 == MIN_MATCH) */
110
111local int base_length[LENGTH_CODES];
112/* First normalized length for each code (0 = MIN_MATCH) */
113
114local int base_dist[D_CODES];
115/* First normalized distance for each code (0 = distance of 1) */
116
117#else
118# include "trees.h"
119#endif /* GEN_TREES_H */
120
121struct static_tree_desc_s {
122 const ct_data *static_tree; /* static tree or NULL */
123 const intf *extra_bits; /* extra bits for each code or NULL */
124 int extra_base; /* base index for extra_bits */
125 int elems; /* max number of elements in the tree */
126 int max_length; /* max bit length for the codes */
127};
128
129#if defined(__SYMBIAN32__)
130# define NO_WRITEABLE_DATA
131#endif
132
133#ifdef NO_WRITEABLE_DATA
134# define DEFINE_LOCAL_STATIC const local
135#else /* #ifdef NO_WRITEABLE_DATA */
136# define DEFINE_LOCAL_STATIC local
137#endif /* #ifdef NO_WRITEABLE_DATA */
138
139DEFINE_LOCAL_STATIC static_tree_desc static_l_desc =
140{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
141
142DEFINE_LOCAL_STATIC static_tree_desc static_d_desc =
143{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
144
145DEFINE_LOCAL_STATIC static_tree_desc static_bl_desc =
146{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
147
148/* ===========================================================================
149 * Local (static) routines in this file.
150 */
151
152local void tr_static_init OF((void));
153local void init_block OF((deflate_state *s));
154local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
155local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
156local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
157local void build_tree OF((deflate_state *s, tree_desc *desc));
158local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
159local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
160local int build_bl_tree OF((deflate_state *s));
161local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
162 int blcodes));
163local void compress_block OF((deflate_state *s, ct_data *ltree,
164 ct_data *dtree));
165local void set_data_type OF((deflate_state *s));
166local unsigned bi_reverse OF((unsigned value, int length));
167local void bi_windup OF((deflate_state *s));
168local void bi_flush OF((deflate_state *s));
169local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
170 int header));
171
172#ifdef GEN_TREES_H
173local void gen_trees_header OF((void));
174#endif
175
176#ifndef DEBUG
177# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
178 /* Send a code of the given tree. c and tree must not have side effects */
179
180#else /* DEBUG */
181# define send_code(s, c, tree) \
182 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
183 send_bits(s, tree[c].Code, tree[c].Len); }
184#endif
185
186/* ===========================================================================
187 * Output a short LSB first on the stream.
188 * IN assertion: there is enough room in pendingBuf.
189 */
190#define put_short(s, w) { \
191 put_byte(s, (uch)((w) & 0xff)); \
192 put_byte(s, (uch)((ush)(w) >> 8)); \
193}
194
195/* ===========================================================================
196 * Send a value on a given number of bits.
197 * IN assertion: length <= 16 and value fits in length bits.
198 */
199#ifdef DEBUG
200local void send_bits OF((deflate_state *s, int value, int length));
201
e224ad29 202local void send_bits(
203 deflate_state *s,
204 int value,
205 int length)
25f0751f 206{
207 Tracevv((stderr," l %2d v %4x ", length, value));
208 Assert(length > 0 && length <= 15, "invalid length");
209 s->bits_sent += (ulg)length;
210
211 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
212 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
213 * unused bits in value.
214 */
215 if (s->bi_valid > (int)Buf_size - length) {
216 s->bi_buf |= (value << s->bi_valid);
217 put_short(s, s->bi_buf);
218 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
219 s->bi_valid += length - Buf_size;
220 } else {
221 s->bi_buf |= value << s->bi_valid;
222 s->bi_valid += length;
223 }
224}
225#else /* !DEBUG */
226
227#define send_bits(s, value, length) \
228{ int len = length;\
229 if (s->bi_valid > (int)Buf_size - len) {\
230 int val = value;\
231 s->bi_buf |= (val << s->bi_valid);\
232 put_short(s, s->bi_buf);\
233 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
234 s->bi_valid += len - Buf_size;\
235 } else {\
236 s->bi_buf |= (value) << s->bi_valid;\
237 s->bi_valid += len;\
238 }\
239}
240#endif /* DEBUG */
241
242
243/* the arguments must not have side effects */
244
245/* ===========================================================================
246 * Initialize the various 'constant' tables.
247 */
248local void tr_static_init()
249{
250#if defined(GEN_TREES_H) || !defined(STDC)
251 static int static_init_done = 0;
252 int n; /* iterates over tree elements */
253 int bits; /* bit counter */
254 int length; /* length value */
255 int code; /* code value */
256 int dist; /* distance index */
257 ush bl_count[MAX_BITS+1];
258 /* number of codes at each bit length for an optimal tree */
259
260 if (static_init_done) return;
261
262#ifndef NO_WRITEABLE_DATA
263 /* For some embedded targets, global variables are not initialized: */
264 static_l_desc.static_tree = static_ltree;
265 static_l_desc.extra_bits = extra_lbits;
266 static_d_desc.static_tree = static_dtree;
267 static_d_desc.extra_bits = extra_dbits;
268 static_bl_desc.extra_bits = extra_blbits;
269#endif /* #ifndef NO_WRITEABLE_DATA */
270
271 /* Initialize the mapping length (0..255) -> length code (0..28) */
272 length = 0;
273 for (code = 0; code < LENGTH_CODES-1; code++) {
274 base_length[code] = length;
275 for (n = 0; n < (1<<extra_lbits[code]); n++) {
276 _length_code[length++] = (uch)code;
277 }
278 }
279 Assert (length == 256, "tr_static_init: length != 256");
280 /* Note that the length 255 (match length 258) can be represented
281 * in two different ways: code 284 + 5 bits or code 285, so we
282 * overwrite length_code[255] to use the best encoding:
283 */
284 _length_code[length-1] = (uch)code;
285
286 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
287 dist = 0;
288 for (code = 0 ; code < 16; code++) {
289 base_dist[code] = dist;
290 for (n = 0; n < (1<<extra_dbits[code]); n++) {
291 _dist_code[dist++] = (uch)code;
292 }
293 }
294 Assert (dist == 256, "tr_static_init: dist != 256");
295 dist >>= 7; /* from now on, all distances are divided by 128 */
296 for ( ; code < D_CODES; code++) {
297 base_dist[code] = dist << 7;
298 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
299 _dist_code[256 + dist++] = (uch)code;
300 }
301 }
302 Assert (dist == 256, "tr_static_init: 256+dist != 512");
303
304 /* Construct the codes of the static literal tree */
305 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
306 n = 0;
307 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
308 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
309 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
310 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
311 /* Codes 286 and 287 do not exist, but we must include them in the
312 * tree construction to get a canonical Huffman tree (longest code
313 * all ones)
314 */
315 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
316
317 /* The static distance tree is trivial: */
318 for (n = 0; n < D_CODES; n++) {
319 static_dtree[n].Len = 5;
320 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
321 }
322 static_init_done = 1;
323
324# ifdef GEN_TREES_H
325 gen_trees_header();
326# endif
327#endif /* defined(GEN_TREES_H) || !defined(STDC) */
328}
329
330/* ===========================================================================
331 * Genererate the file trees.h describing the static trees.
332 */
333#ifdef GEN_TREES_H
334# ifndef DEBUG
335# include <stdio.h>
336# endif
337
338# define SEPARATOR(i, last, width) \
339 ((i) == (last)? "\n};\n\n" : \
340 ((i) % (width) == (width)-1 ? ",\n" : ", "))
341
342void gen_trees_header()
343{
344 FILE *header = fopen("trees.h", "w");
345 int i;
346
347 Assert (header != NULL, "Can't open trees.h");
348 fprintf(header,
349 "/* header created automatically with -DGEN_TREES_H */\n\n");
350
351 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
352 for (i = 0; i < L_CODES+2; i++) {
353 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
354 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
355 }
356
357 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
358 for (i = 0; i < D_CODES; i++) {
359 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
360 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
361 }
362
363 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
364 for (i = 0; i < DIST_CODE_LEN; i++) {
365 fprintf(header, "%2u%s", _dist_code[i],
366 SEPARATOR(i, DIST_CODE_LEN-1, 20));
367 }
368
369 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
370 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
371 fprintf(header, "%2u%s", _length_code[i],
372 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
373 }
374
375 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
376 for (i = 0; i < LENGTH_CODES; i++) {
377 fprintf(header, "%1u%s", base_length[i],
378 SEPARATOR(i, LENGTH_CODES-1, 20));
379 }
380
381 fprintf(header, "local const int base_dist[D_CODES] = {\n");
382 for (i = 0; i < D_CODES; i++) {
383 fprintf(header, "%5u%s", base_dist[i],
384 SEPARATOR(i, D_CODES-1, 10));
385 }
386
387 fclose(header);
388}
389#endif /* GEN_TREES_H */
390
391/* ===========================================================================
392 * Initialize the tree data structures for a new zlib stream.
393 */
e224ad29 394void _tr_init(
395 deflate_state *s)
25f0751f 396{
397 tr_static_init();
398
399 s->l_desc.dyn_tree = s->dyn_ltree;
400 s->l_desc.stat_desc = &static_l_desc;
401
402 s->d_desc.dyn_tree = s->dyn_dtree;
403 s->d_desc.stat_desc = &static_d_desc;
404
405 s->bl_desc.dyn_tree = s->bl_tree;
406 s->bl_desc.stat_desc = &static_bl_desc;
407
408 s->bi_buf = 0;
409 s->bi_valid = 0;
410 s->last_eob_len = 8; /* enough lookahead for inflate */
411#ifdef DEBUG
412 s->compressed_len = 0L;
413 s->bits_sent = 0L;
414#endif
415
416 /* Initialize the first block of the first file: */
417 init_block(s);
418}
419
420/* ===========================================================================
421 * Initialize a new block.
422 */
e224ad29 423local void init_block(
424 deflate_state *s)
25f0751f 425{
426 int n; /* iterates over tree elements */
427
428 /* Initialize the trees. */
429 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
430 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
431 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
432
433 s->dyn_ltree[END_BLOCK].Freq = 1;
434 s->opt_len = s->static_len = 0L;
435 s->last_lit = s->matches = 0;
436}
437
438#define SMALLEST 1
439/* Index within the heap array of least frequent node in the Huffman tree */
440
441
442/* ===========================================================================
443 * Remove the smallest element from the heap and recreate the heap with
444 * one less element. Updates heap and heap_len.
445 */
446#define pqremove(s, tree, top) \
447{\
448 top = s->heap[SMALLEST]; \
449 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
450 pqdownheap(s, tree, SMALLEST); \
451}
452
453/* ===========================================================================
454 * Compares to subtrees, using the tree depth as tie breaker when
455 * the subtrees have equal frequency. This minimizes the worst case length.
456 */
457#define smaller(tree, n, m, depth) \
458 (tree[n].Freq < tree[m].Freq || \
459 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
460
461/* ===========================================================================
462 * Restore the heap property by moving down the tree starting at node k,
463 * exchanging a node with the smallest of its two sons if necessary, stopping
464 * when the heap property is re-established (each father smaller than its
465 * two sons).
466 */
e224ad29 467local void pqdownheap(
468 deflate_state *s,
469 ct_data *tree,
470 int k)
25f0751f 471{
472 int v = s->heap[k];
473 int j = k << 1; /* left son of k */
474 while (j <= s->heap_len) {
475 /* Set j to the smallest of the two sons: */
476 if (j < s->heap_len &&
477 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
478 j++;
479 }
480 /* Exit if v is smaller than both sons */
481 if (smaller(tree, v, s->heap[j], s->depth)) break;
482
483 /* Exchange v with the smallest son */
484 s->heap[k] = s->heap[j]; k = j;
485
486 /* And continue down the tree, setting j to the left son of k */
487 j <<= 1;
488 }
489 s->heap[k] = v;
490}
491
492/* ===========================================================================
493 * Compute the optimal bit lengths for a tree and update the total bit length
494 * for the current block.
495 * IN assertion: the fields freq and dad are set, heap[heap_max] and
496 * above are the tree nodes sorted by increasing frequency.
497 * OUT assertions: the field len is set to the optimal bit length, the
498 * array bl_count contains the frequencies for each bit length.
499 * The length opt_len is updated; static_len is also updated if stree is
500 * not null.
501 */
e224ad29 502local void gen_bitlen(
503 deflate_state *s,
504 tree_desc *desc)
25f0751f 505{
506 ct_data *tree = desc->dyn_tree;
507 int max_code = desc->max_code;
508 const ct_data *stree = desc->stat_desc->static_tree;
509 const intf *extra = desc->stat_desc->extra_bits;
510 int base = desc->stat_desc->extra_base;
511 int max_length = desc->stat_desc->max_length;
512 int h; /* heap index */
513 int n, m; /* iterate over the tree elements */
514 int bits; /* bit length */
515 int xbits; /* extra bits */
516 ush f; /* frequency */
517 int overflow = 0; /* number of elements with bit length too large */
518
519 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
520
521 /* In a first pass, compute the optimal bit lengths (which may
522 * overflow in the case of the bit length tree).
523 */
524 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
525
526 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
527 n = s->heap[h];
528 bits = tree[tree[n].Dad].Len + 1;
529 if (bits > max_length) bits = max_length, overflow++;
530 tree[n].Len = (ush)bits;
531 /* We overwrite tree[n].Dad which is no longer needed */
532
533 if (n > max_code) continue; /* not a leaf node */
534
535 s->bl_count[bits]++;
536 xbits = 0;
537 if (n >= base) xbits = extra[n-base];
538 f = tree[n].Freq;
539 s->opt_len += (ulg)f * (bits + xbits);
540 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
541 }
542 if (overflow == 0) return;
543
544 Trace((stderr,"\nbit length overflow\n"));
545 /* This happens for example on obj2 and pic of the Calgary corpus */
546
547 /* Find the first bit length which could increase: */
548 do {
549 bits = max_length-1;
550 while (s->bl_count[bits] == 0) bits--;
551 s->bl_count[bits]--; /* move one leaf down the tree */
552 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
553 s->bl_count[max_length]--;
554 /* The brother of the overflow item also moves one step up,
555 * but this does not affect bl_count[max_length]
556 */
557 overflow -= 2;
558 } while (overflow > 0);
559
560 /* Now recompute all bit lengths, scanning in increasing frequency.
561 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
562 * lengths instead of fixing only the wrong ones. This idea is taken
563 * from 'ar' written by Haruhiko Okumura.)
564 */
565 for (bits = max_length; bits != 0; bits--) {
566 n = s->bl_count[bits];
567 while (n != 0) {
568 m = s->heap[--h];
569 if (m > max_code) continue;
570 if ((unsigned) tree[m].Len != (unsigned) bits) {
571 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
572 s->opt_len += ((long)bits - (long)tree[m].Len)
573 *(long)tree[m].Freq;
574 tree[m].Len = (ush)bits;
575 }
576 n--;
577 }
578 }
579}
580
581/* ===========================================================================
582 * Generate the codes for a given tree and bit counts (which need not be
583 * optimal).
584 * IN assertion: the array bl_count contains the bit length statistics for
585 * the given tree and the field len is set for all tree elements.
586 * OUT assertion: the field code is set for all tree elements of non
587 * zero code length.
588 */
e224ad29 589local void gen_codes (
590 ct_data *tree,
591 int max_code,
592 ushf *bl_count)
25f0751f 593{
594 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
595 ush code = 0; /* running code value */
596 int bits; /* bit index */
597 int n; /* code index */
598
599 /* The distribution counts are first used to generate the code values
600 * without bit reversal.
601 */
602 for (bits = 1; bits <= MAX_BITS; bits++) {
603 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
604 }
605 /* Check that the bit counts in bl_count are consistent. The last code
606 * must be all ones.
607 */
608 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
609 "inconsistent bit counts");
610 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
611
612 for (n = 0; n <= max_code; n++) {
613 int len = tree[n].Len;
614 if (len == 0) continue;
615 /* Now reverse the bits */
616 tree[n].Code = bi_reverse(next_code[len]++, len);
617
618 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
619 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
620 }
621}
622
623/* ===========================================================================
624 * Construct one Huffman tree and assigns the code bit strings and lengths.
625 * Update the total bit length for the current block.
626 * IN assertion: the field freq is set for all tree elements.
627 * OUT assertions: the fields len and code are set to the optimal bit length
628 * and corresponding code. The length opt_len is updated; static_len is
629 * also updated if stree is not null. The field max_code is set.
630 */
e224ad29 631local void build_tree(
632 deflate_state *s,
633 tree_desc *desc)
25f0751f 634{
635 ct_data *tree = desc->dyn_tree;
636 const ct_data *stree = desc->stat_desc->static_tree;
637 int elems = desc->stat_desc->elems;
638 int n, m; /* iterate over heap elements */
639 int max_code = -1; /* largest code with non zero frequency */
640 int node; /* new node being created */
641
642 /* Construct the initial heap, with least frequent element in
643 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
644 * heap[0] is not used.
645 */
646 s->heap_len = 0, s->heap_max = HEAP_SIZE;
647
648 for (n = 0; n < elems; n++) {
649 if (tree[n].Freq != 0) {
650 s->heap[++(s->heap_len)] = max_code = n;
651 s->depth[n] = 0;
652 } else {
653 tree[n].Len = 0;
654 }
655 }
656
657 /* The pkzip format requires that at least one distance code exists,
658 * and that at least one bit should be sent even if there is only one
659 * possible code. So to avoid special checks later on we force at least
660 * two codes of non zero frequency.
661 */
662 while (s->heap_len < 2) {
663 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
664 tree[node].Freq = 1;
665 s->depth[node] = 0;
666 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
667 /* node is 0 or 1 so it does not have extra bits */
668 }
669 desc->max_code = max_code;
670
671 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
672 * establish sub-heaps of increasing lengths:
673 */
674 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
675
676 /* Construct the Huffman tree by repeatedly combining the least two
677 * frequent nodes.
678 */
679 node = elems; /* next internal node of the tree */
680 do {
681 pqremove(s, tree, n); /* n = node of least frequency */
682 m = s->heap[SMALLEST]; /* m = node of next least frequency */
683
684 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
685 s->heap[--(s->heap_max)] = m;
686
687 /* Create a new node father of n and m */
688 tree[node].Freq = tree[n].Freq + tree[m].Freq;
689 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
690 s->depth[n] : s->depth[m]) + 1);
691 tree[n].Dad = tree[m].Dad = (ush)node;
692#ifdef DUMP_BL_TREE
693 if (tree == s->bl_tree) {
694 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
695 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
696 }
697#endif
698 /* and insert the new node in the heap */
699 s->heap[SMALLEST] = node++;
700 pqdownheap(s, tree, SMALLEST);
701
702 } while (s->heap_len >= 2);
703
704 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
705
706 /* At this point, the fields freq and dad are set. We can now
707 * generate the bit lengths.
708 */
709 gen_bitlen(s, (tree_desc *)desc);
710
711 /* The field len is now set, we can generate the bit codes */
712 gen_codes ((ct_data *)tree, max_code, s->bl_count);
713}
714
715/* ===========================================================================
716 * Scan a literal or distance tree to determine the frequencies of the codes
717 * in the bit length tree.
718 */
e224ad29 719local void scan_tree (
720 deflate_state *s,
721 ct_data *tree,
722 int max_code)
25f0751f 723{
724 int n; /* iterates over all tree elements */
725 int prevlen = -1; /* last emitted length */
726 int curlen; /* length of current code */
727 int nextlen = tree[0].Len; /* length of next code */
728 int count = 0; /* repeat count of the current code */
729 int max_count = 7; /* max repeat count */
730 int min_count = 4; /* min repeat count */
731
732 if (nextlen == 0) max_count = 138, min_count = 3;
733 tree[max_code+1].Len = (ush)0xffff; /* guard */
734
735 for (n = 0; n <= max_code; n++) {
736 curlen = nextlen; nextlen = tree[n+1].Len;
737 if (++count < max_count && curlen == nextlen) {
738 continue;
739 } else if (count < min_count) {
740 s->bl_tree[curlen].Freq += count;
741 } else if (curlen != 0) {
742 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
743 s->bl_tree[REP_3_6].Freq++;
744 } else if (count <= 10) {
745 s->bl_tree[REPZ_3_10].Freq++;
746 } else {
747 s->bl_tree[REPZ_11_138].Freq++;
748 }
749 count = 0; prevlen = curlen;
750 if (nextlen == 0) {
751 max_count = 138, min_count = 3;
752 } else if (curlen == nextlen) {
753 max_count = 6, min_count = 3;
754 } else {
755 max_count = 7, min_count = 4;
756 }
757 }
758}
759
760/* ===========================================================================
761 * Send a literal or distance tree in compressed form, using the codes in
762 * bl_tree.
763 */
e224ad29 764local void send_tree (
765 deflate_state *s,
766 ct_data *tree,
767 int max_code)
25f0751f 768{
769 int n; /* iterates over all tree elements */
770 int prevlen = -1; /* last emitted length */
771 int curlen; /* length of current code */
772 int nextlen = tree[0].Len; /* length of next code */
773 int count = 0; /* repeat count of the current code */
774 int max_count = 7; /* max repeat count */
775 int min_count = 4; /* min repeat count */
776
777 /* tree[max_code+1].Len = -1; */ /* guard already set */
778 if (nextlen == 0) max_count = 138, min_count = 3;
779
780 for (n = 0; n <= max_code; n++) {
781 curlen = nextlen; nextlen = tree[n+1].Len;
782 if (++count < max_count && curlen == nextlen) {
783 continue;
784 } else if (count < min_count) {
785 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
786
787 } else if (curlen != 0) {
788 if (curlen != prevlen) {
789 send_code(s, curlen, s->bl_tree); count--;
790 }
791 Assert(count >= 3 && count <= 6, " 3_6?");
792 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
793
794 } else if (count <= 10) {
795 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
796
797 } else {
798 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
799 }
800 count = 0; prevlen = curlen;
801 if (nextlen == 0) {
802 max_count = 138, min_count = 3;
803 } else if (curlen == nextlen) {
804 max_count = 6, min_count = 3;
805 } else {
806 max_count = 7, min_count = 4;
807 }
808 }
809}
810
811/* ===========================================================================
812 * Construct the Huffman tree for the bit lengths and return the index in
813 * bl_order of the last bit length code to send.
814 */
e224ad29 815local int build_bl_tree(
816 deflate_state *s)
25f0751f 817{
818 int max_blindex; /* index of last bit length code of non zero freq */
819
820 /* Determine the bit length frequencies for literal and distance trees */
821 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
822 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
823
824 /* Build the bit length tree: */
825 build_tree(s, (tree_desc *)(&(s->bl_desc)));
826 /* opt_len now includes the length of the tree representations, except
827 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
828 */
829
830 /* Determine the number of bit length codes to send. The pkzip format
831 * requires that at least 4 bit length codes be sent. (appnote.txt says
832 * 3 but the actual value used is 4.)
833 */
834 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
835 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
836 }
837 /* Update opt_len to include the bit length tree and counts */
838 s->opt_len += 3*(max_blindex+1) + 5+5+4;
839 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
840 s->opt_len, s->static_len));
841
842 return max_blindex;
843}
844
845/* ===========================================================================
846 * Send the header for a block using dynamic Huffman trees: the counts, the
847 * lengths of the bit length codes, the literal tree and the distance tree.
848 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
849 */
e224ad29 850local void send_all_trees(
851 deflate_state *s,
852 int lcodes,
853 int dcodes,
854 int blcodes)
25f0751f 855{
856 int rank; /* index in bl_order */
857
858 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
859 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
860 "too many codes");
861 Tracev((stderr, "\nbl counts: "));
862 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
863 send_bits(s, dcodes-1, 5);
864 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
865 for (rank = 0; rank < blcodes; rank++) {
866 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
867 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
868 }
869 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
870
871 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
872 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
873
874 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
875 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
876}
877
878/* ===========================================================================
879 * Send a stored block
880 */
e224ad29 881void _tr_stored_block(
882 deflate_state *s,
883 charf *buf,
884 ulg stored_len,
885 int eof)
25f0751f 886{
887 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
888#ifdef DEBUG
889 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
890 s->compressed_len += (stored_len + 4) << 3;
891#endif
892 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
893}
894
895/* ===========================================================================
896 * Send one empty static block to give enough lookahead for inflate.
897 * This takes 10 bits, of which 7 may remain in the bit buffer.
898 * The current inflate code requires 9 bits of lookahead. If the
899 * last two codes for the previous block (real code plus EOB) were coded
900 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
901 * the last real code. In this case we send two empty static blocks instead
902 * of one. (There are no problems if the previous block is stored or fixed.)
903 * To simplify the code, we assume the worst case of last real code encoded
904 * on one bit only.
905 */
e224ad29 906void _tr_align(
907 deflate_state *s)
25f0751f 908{
909 send_bits(s, STATIC_TREES<<1, 3);
910 send_code(s, END_BLOCK, static_ltree);
911#ifdef DEBUG
912 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
913#endif
914 bi_flush(s);
915 /* Of the 10 bits for the empty block, we have already sent
916 * (10 - bi_valid) bits. The lookahead for the last real code (before
917 * the EOB of the previous block) was thus at least one plus the length
918 * of the EOB plus what we have just sent of the empty static block.
919 */
920 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
921 send_bits(s, STATIC_TREES<<1, 3);
922 send_code(s, END_BLOCK, static_ltree);
923#ifdef DEBUG
924 s->compressed_len += 10L;
925#endif
926 bi_flush(s);
927 }
928 s->last_eob_len = 7;
929}
930
931/* ===========================================================================
932 * Determine the best encoding for the current block: dynamic trees, static
933 * trees or store, and output the encoded block to the zip file.
934 */
e224ad29 935void _tr_flush_block(
936 deflate_state *s,
937 charf *buf,
938 ulg stored_len,
939 int eof)
25f0751f 940{
941 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
942 int max_blindex = 0; /* index of last bit length code of non zero freq */
943
944 /* Build the Huffman trees unless a stored block is forced */
945 if (s->level > 0) {
946
947 /* Check if the file is binary or text */
948 if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
949 set_data_type(s);
950
951 /* Construct the literal and distance trees */
952 build_tree(s, (tree_desc *)(&(s->l_desc)));
953 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
954 s->static_len));
955
956 build_tree(s, (tree_desc *)(&(s->d_desc)));
957 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
958 s->static_len));
959 /* At this point, opt_len and static_len are the total bit lengths of
960 * the compressed block data, excluding the tree representations.
961 */
962
963 /* Build the bit length tree for the above two trees, and get the index
964 * in bl_order of the last bit length code to send.
965 */
966 max_blindex = build_bl_tree(s);
967
968 /* Determine the best encoding. Compute the block lengths in bytes. */
969 opt_lenb = (s->opt_len+3+7)>>3;
970 static_lenb = (s->static_len+3+7)>>3;
971
972 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
973 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
974 s->last_lit));
975
976 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
977
978 } else {
979 Assert(buf != (char*)0, "lost buf");
980 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
981 }
982
983#ifdef FORCE_STORED
984 if (buf != (char*)0) { /* force stored block */
985#else
986 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
987 /* 4: two words for the lengths */
988#endif
989 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
990 * Otherwise we can't have processed more than WSIZE input bytes since
991 * the last block flush, because compression would have been
992 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
993 * transform a block into a stored block.
994 */
995 _tr_stored_block(s, buf, stored_len, eof);
996
997#ifdef FORCE_STATIC
998 } else if (static_lenb >= 0) { /* force static trees */
999#else
1000 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1001#endif
1002 send_bits(s, (STATIC_TREES<<1)+eof, 3);
1003 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1004#ifdef DEBUG
1005 s->compressed_len += 3 + s->static_len;
1006#endif
1007 } else {
1008 send_bits(s, (DYN_TREES<<1)+eof, 3);
1009 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1010 max_blindex+1);
1011 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1012#ifdef DEBUG
1013 s->compressed_len += 3 + s->opt_len;
1014#endif
1015 }
1016 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1017 /* The above check is made mod 2^32, for files larger than 512 MB
1018 * and uLong implemented on 32 bits.
1019 */
1020 init_block(s);
1021
1022 if (eof) {
1023 bi_windup(s);
1024#ifdef DEBUG
1025 s->compressed_len += 7; /* align on byte boundary */
1026#endif
1027 }
1028 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1029 s->compressed_len-7*eof));
1030}
1031
1032/* ===========================================================================
1033 * Save the match info and tally the frequency counts. Return true if
1034 * the current block must be flushed.
1035 */
e224ad29 1036int _tr_tally (
1037 deflate_state *s,
1038 unsigned dist,
1039 unsigned lc)
25f0751f 1040{
1041 s->d_buf[s->last_lit] = (ush)dist;
1042 s->l_buf[s->last_lit++] = (uch)lc;
1043 if (dist == 0) {
1044 /* lc is the unmatched char */
1045 s->dyn_ltree[lc].Freq++;
1046 } else {
1047 s->matches++;
1048 /* Here, lc is the match length - MIN_MATCH */
1049 dist--; /* dist = match distance - 1 */
1050 Assert((ush)dist < (ush)MAX_DIST(s) &&
1051 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1052 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1053
1054 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1055 s->dyn_dtree[d_code(dist)].Freq++;
1056 }
1057
1058#ifdef TRUNCATE_BLOCK
1059 /* Try to guess if it is profitable to stop the current block here */
1060 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1061 /* Compute an upper bound for the compressed length */
1062 ulg out_length = (ulg)s->last_lit*8L;
1063 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1064 int dcode;
1065 for (dcode = 0; dcode < D_CODES; dcode++) {
1066 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1067 (5L+extra_dbits[dcode]);
1068 }
1069 out_length >>= 3;
1070 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1071 s->last_lit, in_length, out_length,
1072 100L - out_length*100L/in_length));
1073 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1074 }
1075#endif
1076 return (s->last_lit == s->lit_bufsize-1);
1077 /* We avoid equality with lit_bufsize because of wraparound at 64K
1078 * on 16 bit machines and because stored blocks are restricted to
1079 * 64K-1 bytes.
1080 */
1081}
1082
1083/* ===========================================================================
1084 * Send the block data compressed using the given Huffman trees
1085 */
e224ad29 1086local void compress_block(
1087 deflate_state *s,
1088 ct_data *ltree,
1089 ct_data *dtree)
25f0751f 1090{
1091 unsigned dist; /* distance of matched string */
1092 int lc; /* match length or unmatched char (if dist == 0) */
1093 unsigned lx = 0; /* running index in l_buf */
1094 unsigned code; /* the code to send */
1095 int extra; /* number of extra bits to send */
1096
1097 if (s->last_lit != 0) do {
1098 dist = s->d_buf[lx];
1099 lc = s->l_buf[lx++];
1100 if (dist == 0) {
1101 send_code(s, lc, ltree); /* send a literal byte */
1102 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1103 } else {
1104 /* Here, lc is the match length - MIN_MATCH */
1105 code = _length_code[lc];
1106 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1107 extra = extra_lbits[code];
1108 if (extra != 0) {
1109 lc -= base_length[code];
1110 send_bits(s, lc, extra); /* send the extra length bits */
1111 }
1112 dist--; /* dist is now the match distance - 1 */
1113 code = d_code(dist);
1114 Assert (code < D_CODES, "bad d_code");
1115
1116 send_code(s, code, dtree); /* send the distance code */
1117 extra = extra_dbits[code];
1118 if (extra != 0) {
1119 dist -= base_dist[code];
1120 send_bits(s, dist, extra); /* send the extra distance bits */
1121 }
1122 } /* literal or match pair ? */
1123
1124 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1125 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1126 "pendingBuf overflow");
1127
1128 } while (lx < s->last_lit);
1129
1130 send_code(s, END_BLOCK, ltree);
1131 s->last_eob_len = ltree[END_BLOCK].Len;
1132}
1133
1134/* ===========================================================================
1135 * Set the data type to BINARY or TEXT, using a crude approximation:
1136 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1137 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1138 * IN assertion: the fields Freq of dyn_ltree are set.
1139 */
e224ad29 1140local void set_data_type(
1141 deflate_state *s)
25f0751f 1142{
1143 int n;
1144
1145 for (n = 0; n < 9; n++)
1146 if (s->dyn_ltree[n].Freq != 0)
1147 break;
1148 if (n == 9)
1149 for (n = 14; n < 32; n++)
1150 if (s->dyn_ltree[n].Freq != 0)
1151 break;
1152 s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1153}
1154
1155/* ===========================================================================
1156 * Reverse the first len bits of a code, using straightforward code (a faster
1157 * method would use a table)
1158 * IN assertion: 1 <= len <= 15
1159 */
e224ad29 1160local unsigned bi_reverse(
1161 unsigned code,
1162 int len)
25f0751f 1163{
1164 register unsigned res = 0;
1165 do {
1166 res |= code & 1;
1167 code >>= 1, res <<= 1;
1168 } while (--len > 0);
1169 return res >> 1;
1170}
1171
1172/* ===========================================================================
1173 * Flush the bit buffer, keeping at most 7 bits in it.
1174 */
e224ad29 1175local void bi_flush(
1176 deflate_state *s)
25f0751f 1177{
1178 if (s->bi_valid == 16) {
1179 put_short(s, s->bi_buf);
1180 s->bi_buf = 0;
1181 s->bi_valid = 0;
1182 } else if (s->bi_valid >= 8) {
1183 put_byte(s, (Byte)s->bi_buf);
1184 s->bi_buf >>= 8;
1185 s->bi_valid -= 8;
1186 }
1187}
1188
1189/* ===========================================================================
1190 * Flush the bit buffer and align the output on a byte boundary
1191 */
e224ad29 1192local void bi_windup(
1193 deflate_state *s)
25f0751f 1194{
1195 if (s->bi_valid > 8) {
1196 put_short(s, s->bi_buf);
1197 } else if (s->bi_valid > 0) {
1198 put_byte(s, (Byte)s->bi_buf);
1199 }
1200 s->bi_buf = 0;
1201 s->bi_valid = 0;
1202#ifdef DEBUG
1203 s->bits_sent = (s->bits_sent+7) & ~7;
1204#endif
1205}
1206
1207/* ===========================================================================
1208 * Copy a stored block, storing first the length and its
1209 * one's complement if requested.
1210 */
e224ad29 1211local void copy_block(
1212 deflate_state *s,
1213 charf *buf,
1214 unsigned len,
1215 int header)
25f0751f 1216{
1217 bi_windup(s); /* align on byte boundary */
1218 s->last_eob_len = 8; /* enough lookahead for inflate */
1219
1220 if (header) {
1221 put_short(s, (ush)len);
1222 put_short(s, (ush)~len);
1223#ifdef DEBUG
1224 s->bits_sent += 2*16;
1225#endif
1226 }
1227#ifdef DEBUG
1228 s->bits_sent += (ulg)len<<3;
1229#endif
1230 while (len--) {
1231 put_byte(s, *buf++);
1232 }
1233}